This file is indexed.

/usr/include/ql/math/optimization/simulatedannealing.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2013 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file simulatedannealing.hpp
    \brief Numerical Recipes in C (second edition), Chapter 10.9,
           with the original exit criterion in f(x) replaced by one
           in x (see simplex.cpp for a reference to GSL concerning this)
*/

#ifndef quantlib_optimization_simulatedannealing_hpp
#define quantlib_optimization_simulatedannealing_hpp

#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <boost/math/special_functions/fpclassify.hpp>

namespace QuantLib {

    /*! Class RNG must implement the following interface:
        \code
            RNG::sample_type RNG::next() const;
        \endcode

        \ingroup optimizers
    */

    template <class RNG = MersenneTwisterUniformRng>
    class SimulatedAnnealing : public OptimizationMethod {

      public:

        enum Scheme {
            ConstantFactor,
            ConstantBudget
        };

        /*! reduce temperature T by a factor of \f$ (1-\epsilon) \f$ after m moves */
        SimulatedAnnealing(const Real lambda, const Real T0,
                           const Real epsilon, const Size m,
                           const RNG &rng = RNG())
            : scheme_(ConstantFactor), lambda_(lambda), T0_(T0),
              epsilon_(epsilon), alpha_(0.0), K_(0), rng_(rng), m_(m) {}

        /*! budget a total of K moves, set temperature T to the initial
          temperature times \f$ ( 1 - k/K )^\alpha \f$ with k being the total number
          of moves so far. After K moves the temperature is guaranteed to be
          zero, after that the optimization runs like a deterministic simplex
          algorithm.
        */
        SimulatedAnnealing(const Real lambda, const Real T0, const Size K,
                           const Real alpha, const RNG &rng = RNG())
            : scheme_(ConstantBudget), lambda_(lambda), T0_(T0), epsilon_(0.0),
              alpha_(alpha), K_(K), rng_(rng) {}

        EndCriteria::Type minimize(Problem &P, const EndCriteria &ec);

      private:

        const Scheme scheme_;
        const Real lambda_, T0_, epsilon_, alpha_;
        const Size K_;
        const RNG rng_;

        Real simplexSize();
        void amotsa(Problem &, Real);

        Real T_;
        std::vector<Array> vertices_;
        Array values_, sum_;
        Integer i_, ihi_, ilo_, j_, m_, n_;
        Real fac1_, fac2_, yflu_;
        Real rtol_, swap_, yhi_, ylo_, ynhi_, ysave_, yt_, ytry_, yb_, tt_;
        Array pb_, ptry_;
        Size iteration_, iterationT_;
    };

    template <class RNG>
    Real SimulatedAnnealing<RNG>::simplexSize() { // this is taken from
                                                  // simplex.cpp
        Array center(vertices_.front().size(), 0);
        for (Size i = 0; i < vertices_.size(); ++i)
            center += vertices_[i];
        center *= 1 / Real(vertices_.size());
        Real result = 0;
        for (Size i = 0; i < vertices_.size(); ++i) {
            Array temp = vertices_[i] - center;
            result += std::sqrt(DotProduct(temp, temp));
        }
        return result / Real(vertices_.size());
    }

    template <class RNG>
    void SimulatedAnnealing<RNG>::amotsa(Problem &P, Real fac) {
        fac1_ = (1.0 - fac) / ((Real)n_);
        fac2_ = fac1_ - fac;
        for (j_ = 0; j_ < n_; j_++) {
            ptry_[j_] = sum_[j_] * fac1_ - vertices_[ihi_][j_] * fac2_;
        }
        if (!P.constraint().test(ptry_))
            ytry_ = QL_MAX_REAL;
        else
            ytry_ = P.value(ptry_);
        if (boost::math::isnan(ytry_)) {
            ytry_ = QL_MAX_REAL;
        }
        if (ytry_ <= yb_) {
            yb_ = ytry_;
            pb_ = ptry_;
        }
        yflu_ = ytry_ - tt_ * std::log(rng_.next().value);
        if (yflu_ < yhi_) {
            values_[ihi_] = ytry_;
            yhi_ = yflu_;
            for (j_ = 0; j_ < n_; j_++) {
                sum_[j_] += ptry_[j_] - vertices_[ihi_][j_];
                vertices_[ihi_][j_] = ptry_[j_];
            }
        }
        ytry_ = yflu_;
        return;
    }

    template <class RNG>
    EndCriteria::Type SimulatedAnnealing<RNG>::minimize(Problem &P,
                                                        const EndCriteria &ec) {

        Size stationaryStateIterations_ = 0;
        EndCriteria::Type ecType = EndCriteria::None;
        P.reset();
        Array x = P.currentValue();
        iteration_ = 0;
        n_ = x.size();
        ptry_ = Array(n_, 0.0);

        // build vertices

        vertices_ = std::vector<Array>(n_ + 1, x);
        for (i_ = 0; i_ < n_; i_++) {
            Array direction(n_, 0.0);
            direction[i_] = 1.0;
            P.constraint().update(vertices_[i_ + 1], direction, lambda_);
        }
        values_ = Array(n_ + 1, 0.0);
        for (i_ = 0; i_ <= n_; i_++) {
            if (!P.constraint().test(vertices_[i_]))
                values_[i_] = QL_MAX_REAL;
            else
                values_[i_] = P.value(vertices_[i_]);
            if (boost::math::isnan(ytry_)) { // handle NAN
                values_[i_] = QL_MAX_REAL;
            }
        }

        // minimize

        T_ = T0_;
        yb_ = QL_MAX_REAL;
        pb_ = Array(n_, 0.0);
        do {
            iterationT_ = iteration_;
            do {
                sum_ = Array(n_, 0.0);
                for (i_ = 0; i_ <= n_; i_++)
                    sum_ += vertices_[i_];
                tt_ = -T_;
                ilo_ = 0;
                ihi_ = 1;
                ynhi_ = values_[0] + tt_ * std::log(rng_.next().value);
                ylo_ = ynhi_;
                yhi_ = values_[1] + tt_ * std::log(rng_.next().value);
                if (ylo_ > yhi_) {
                    ihi_ = 0;
                    ilo_ = 1;
                    ynhi_ = yhi_;
                    yhi_ = ylo_;
                    ylo_ = ynhi_;
                }
                for (i_ = 2; i_ < n_ + 1; i_++) {
                    yt_ = values_[i_] + tt_ * std::log(rng_.next().value);
                    if (yt_ <= ylo_) {
                        ilo_ = i_;
                        ylo_ = yt_;
                    }
                    if (yt_ > yhi_) {
                        ynhi_ = yhi_;
                        ihi_ = i_;
                        yhi_ = yt_;
                    } else {
                        if (yt_ > ynhi_) {
                            ynhi_ = yt_;
                        }
                    }
                }

                // rtol_ = 2.0 * std::fabs(yhi_ - ylo_) /
                //         (std::fabs(yhi_) + std::fabs(ylo_));
                // check rtol against some ftol... // NR end criterion in f(x)

                // GSL end criterion in x (cf. above)
                if (ec.checkStationaryPoint(simplexSize(), 0.0,
                                            stationaryStateIterations_,
                                            ecType) ||
                    ec.checkMaxIterations(iteration_, ecType)) {
                    // no matter what, we return the best ever point !
                    P.setCurrentValue(pb_);
                    P.setFunctionValue(yb_);
                    return ecType;
                }

                iteration_ += 2;
                amotsa(P, -1.0);
                if (ytry_ <= ylo_) {
                    amotsa(P, 2.0);
                } else {
                    if (ytry_ >= ynhi_) {
                        ysave_ = yhi_;
                        amotsa(P, 0.5);
                        if (ytry_ >= ysave_) {
                            for (i_ = 0; i_ < n_ + 1; i_++) {
                                if (i_ != ilo_) {
                                    for (j_ = 0; j_ < n_; j_++) {
                                        sum_[j_] = 0.5 * (vertices_[i_][j_] +
                                                          vertices_[ilo_][j_]);
                                        vertices_[i_][j_] = sum_[j_];
                                    }
                                    values_[i_] = P.value(sum_);
                                }
                            }
                            iteration_ += n_;
                            for (i_ = 0; i_ < n_; i_++)
                                sum_[i_] = 0.0;
                            for (i_ = 0; i_ <= n_; i_++)
                                sum_ += vertices_[i_];
                        }
                    } else {
                        iteration_ += 1;
                    }
                }
            } while (iteration_ <
                     iterationT_ + (scheme_ == ConstantFactor ? m_ : 1));

            switch (scheme_) {
            case ConstantFactor:
                T_ *= (1.0 - epsilon_);
                break;
            case ConstantBudget:
                if (iteration_ <= K_)
                    T_ = T0_ *
                         std::pow(1.0 - (Real)iteration_ / (Real)K_, alpha_);
                else
                    T_ = 0.0;
                break;
            }

        } while (true);
    }
}

#endif