This file is indexed.

/usr/include/ql/math/ode/adaptiverungekutta.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2012 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file adaptiverungekutta.hpp
    \brief Runge-Kutta ODE integration

    Runge Kutta method with adaptive stepsize as described in
    Numerical Recipes in C, Chapter 16.2
*/

#ifndef quantlib_adaptive_runge_kutta_hpp
#define quantlib_adaptive_runge_kutta_hpp

#include <ql/types.hpp>
#include <ql/errors.hpp>
#include <ql/utilities/disposable.hpp>
#include <boost/function.hpp>
#include <vector>
#include <cmath>

namespace QuantLib {

    template <class T = Real>
    class AdaptiveRungeKutta {
      public:
        typedef boost::function<
          Disposable<std::vector<T> >(const Real,
                                      const std::vector<T>&)> OdeFct;
        typedef boost::function<T(const Real, const T)> OdeFct1d;

        /*! The class is constructed with the following inputs:
            - eps       prescribed error for the solution
            - h1        start step size
            - hmin      smallest step size allowed
        */

        AdaptiveRungeKutta(const Real eps=1.0e-6,
                           const Real h1=1.0e-4,
                           const Real hmin=0.0)
        : eps_(eps), h1_(h1), hmin_(hmin),
          a2(0.2), a3(0.3), a4(0.6), a5(1.0), a6(0.875),
          b21(0.2), b31(3.0/40.0), b32(9.0/40.0), b41(0.3), b42(-0.9), b43(1.2),
          b51(-11.0/54.0), b52(2.5), b53(-70.0/27.0), b54(35.0/27.0),
          b61(1631.0/55296.0), b62(175.0/512.0), b63(575.0/13824.0),
          b64(44275.0/110592.0), b65(253.0/4096.0),
          c1(37.0/378.0), c3(250.0/621.0), c4(125.0/594.0), c6(512.0/1771.0),
          dc1(c1-2825.0/27648.0), dc3(c3-18575.0/48384.0),
          dc4(c4-13525.0/55296.0), dc5(-277.0/14336.0), dc6(c6-0.25),
          ADAPTIVERK_MAXSTP(10000), ADAPTIVERK_TINY(1.0E-30),
          ADAPTIVERK_SAFETY(0.9), ADAPTIVERK_PGROW(-0.2),
          ADAPTIVERK_PSHRINK(-0.25), ADAPTIVERK_ERRCON(1.89E-4) {}

        /*! Integrate the ode from \f$ x1 \f$ to \f$ x2 \f$ with
            initial value condition \f$ f(x1)=y1 \f$.

            The ode is given by a function \f$ F: R \times K^n
            \rightarrow K^n \f$ as \f$ f'(x) = F(x,f(x)) \f$, $K=R,
            C$ */
        Disposable<std::vector<T> > operator()(const OdeFct& ode,
                                               const std::vector<T>& y1,
                                               const Real x1,
                                               const Real x2);
        T operator()(const OdeFct1d& ode,
                     const T y1,
                     const Real x1,
                     const Real x2);

    private:
        void rkqs(std::vector<T>& y,
                  const std::vector<T>& dydx,
                  Real& x,
                  const Real htry,
                  const Real eps,
                  const std::vector<Real>& yScale,
                  Real &hdid,
                  Real &hnext,
                  const OdeFct& derivs);
        void rkck(const std::vector<T>& y,
                  const std::vector<T>& dydx,
                  Real x,
                  const Real h,
                  std::vector<T>& yout,
                  std::vector<T>& yerr,
                  const OdeFct& derivs);

        const std::vector<T> yStart_;
        const Real eps_, h1_, hmin_;
        const Real a2,a3,a4,a5,a6,
                   b21,b31,b32,b41,b42,b43,b51,b52,b53,b54,b61,b62,b63,b64,b65,
                   c1,c3,c4,c6,dc1,dc3,dc4,dc5,dc6;
        const double ADAPTIVERK_MAXSTP, ADAPTIVERK_TINY, ADAPTIVERK_SAFETY,
                   ADAPTIVERK_PGROW, ADAPTIVERK_PSHRINK, ADAPTIVERK_ERRCON;
    };



    template<class T>
    Disposable<std::vector<T> > AdaptiveRungeKutta<T>::operator()(
                                                     const OdeFct& ode,
                                                     const std::vector<T>& y1,
                                                     const Real x1,
                                                     const Real x2) {
        Size n = y1.size();
        std::vector<T> y(y1);
        std::vector<Real> yScale(n);
        Real x = x1;
        Real h = h1_* (x1<=x2 ? 1 : -1);
        Real hnext,hdid;

        for (Size nstp=1; nstp<=ADAPTIVERK_MAXSTP; nstp++) {
            std::vector<T> dydx=ode(x,y);
            for (Size i=0;i<n;i++)
                yScale[i] = std::abs(y[i])+std::abs(dydx[i]*h)+ADAPTIVERK_TINY;
            if ((x+h-x2)*(x+h-x1) > 0.0)
                h=x2-x;
            rkqs(y,dydx,x,h,eps_,yScale,hdid,hnext,ode);

            if ((x-x2)*(x2-x1) >= 0.0)
                return y;

            if (std::fabs(hnext) <= hmin_)
                QL_FAIL("Step size (" << hnext << ") too small ("
                        << hmin_ << " min) in AdaptiveRungeKutta");
            h=hnext;
        }
        QL_FAIL("Too many steps (" << ADAPTIVERK_MAXSTP
                << ") in AdaptiveRungeKutta");
    }

    namespace detail {

        template <class T>
        struct OdeFctWrapper {
            typedef typename AdaptiveRungeKutta<T>::OdeFct1d OdeFct1d;
            OdeFctWrapper(const OdeFct1d& ode1d)
            : ode1d_(ode1d) {}
            Disposable<std::vector<T> > operator()(const Real x,
                                                   const std::vector<T>& y) {
                std::vector<T> res(1,ode1d_(x,y[0]));
                return res;
            }
            const OdeFct1d& ode1d_;
        };

    }

    template<class T>
    T AdaptiveRungeKutta<T>::operator()(const OdeFct1d& ode,
                                        const T y1,
                                        const Real x1,
                                        const Real x2) {
        return operator()(detail::OdeFctWrapper<T>(ode),
                          std::vector<T>(1,y1),x1,x2)[0];
    }

    template<class T>
    void AdaptiveRungeKutta<T>::rkqs(std::vector<T>& y,
                                     const std::vector<T>& dydx,
                                     Real& x,
                                     const Real htry,
                                     const Real eps,
                                     const std::vector<Real>& yScale,
                                     Real& hdid,
                                     Real& hnext,
                                     const OdeFct& derivs) {
        Size n=y.size();
        Real errmax,xnew;
        std::vector<T> yerr(n),ytemp(n);

        Real h=htry;

        for(;;) {
            rkck(y,dydx,x,h,ytemp,yerr,derivs);
            errmax=0.0;
            for (Size i=0;i<n;i++)
                errmax=std::max(errmax,std::abs(yerr[i]/yScale[i]));
            errmax/=eps;
            if (errmax>1.0) {
                Real htemp1 = ADAPTIVERK_SAFETY*h*std::pow(errmax,ADAPTIVERK_PSHRINK);
                Real htemp2 = h / 10;
                // These would be std::min and std::max, of course,
                // but VC++14 had problems inlining them and caused
                // the wrong results to be calculated.  The problem
                // seems to be fixed in update 3, but let's keep this
                // implementation for compatibility.
                Real max_positive = htemp1 > htemp2 ? htemp1 : htemp2;
                Real max_negative = htemp1 < htemp2 ? htemp1 : htemp2;
                h = ((h >= 0.0) ? max_positive : max_negative);
                xnew=x+h;
                if (xnew==x)
                    QL_FAIL("Stepsize underflow (" << h << " at x = " << x
                            << ") in AdaptiveRungeKutta::rkqs");
                continue;
            } else {
                if (errmax>ADAPTIVERK_ERRCON)
                    hnext=ADAPTIVERK_SAFETY*h*std::pow(errmax,ADAPTIVERK_PGROW);
                else
                    hnext=5.0*h;
                x+=(hdid=h);
                for (Size i=0;i<n;i++)
                    y[i]=ytemp[i];
                break;
            }
        }
    }

    template <class T>
    void AdaptiveRungeKutta<T>::rkck(const std::vector<T>& y,
                                     const std::vector<T>& dydx,
                                     Real x,
                                     const Real h,
                                     std::vector<T>& yout,
                                     std::vector<T> &yerr,
                                     const OdeFct& derivs) {

        Size n=y.size();
        std::vector<T> ak2(n),ak3(n),ak4(n),ak5(n),ak6(n),ytemp(n);

        // first step
        for (Size i=0;i<n;i++)
            ytemp[i]=y[i]+b21*h*dydx[i];

        // second step
        ak2=derivs(x+a2*h,ytemp);
        for (Size i=0;i<n;i++)
            ytemp[i]=y[i]+h*(b31*dydx[i]+b32*ak2[i]);

        // third step
        ak3=derivs(x+a3*h,ytemp);
        for (Size i=0;i<n;i++)
            ytemp[i]=y[i]+h*(b41*dydx[i]+b42*ak2[i]+b43*ak3[i]);

        // fourth step
        ak4=derivs(x+a4*h,ytemp);
        for (Size i=0;i<n;i++)
            ytemp[i]=y[i]+h*(b51*dydx[i]+b52*ak2[i]+b53*ak3[i]+b54*ak4[i]);

        // fifth step
        ak5=derivs(x+a5*h,ytemp);
        for (Size i=0;i<n;i++)
            ytemp[i]=y[i]+h*(b61*dydx[i]+b62*ak2[i]+b63*ak3[i]+b64*ak4[i]+b65*ak5[i]);

        // sixth step
        ak6=derivs(x+a6*h,ytemp);
        for (Size i=0;i<n;i++) {
            yout[i]=y[i]+h*(c1*dydx[i]+c3*ak3[i]+c4*ak4[i]+c6*ak6[i]);
            yerr[i]=h*(dc1*dydx[i]+dc3*ak3[i]+dc4*ak4[i]+dc5*ak5[i]+dc6*ak6[i]);
        }
    }

}

#endif