This file is indexed.

/usr/include/ql/math/interpolations/kernelinterpolation2d.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Dimitri Reiswich

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file kernelinterpolation2d.hpp
    \brief 2D Kernel interpolation
*/

#ifndef quantlib_kernel_interpolation2D_hpp
#define quantlib_kernel_interpolation2D_hpp

#include <ql/math/interpolations/interpolation2d.hpp>
#include <ql/math/matrixutilities/qrdecomposition.hpp>

/*
  Grid Explanation:

  Grid=[  (x1,y1) (x1,y2) (x1,y3)... (x1,yM);
          (x2,y1) (x2,y2) (x2,y3)... (x2,yM);
          .
          .
          .
          (xN,y1) (xN,y2) (xN,y3)... (xN,yM);
       ]

  The Passed variables are:
  - x which is N dimensional
  - y which is M dimensional
  - zData which is NxM dimensional and has the z values
    corresponding to the grid above.
  - kernel is a template which needs a Real operator()(Real x) implementation
*/


namespace QuantLib {

    namespace detail {

        template <class I1, class I2, class M, class Kernel>
        class KernelInterpolation2DImpl
            : public Interpolation2D::templateImpl<I1,I2,M> {

          public:
            KernelInterpolation2DImpl(const I1& xBegin, const I1& xEnd,
                                      const I2& yBegin, const I2& yEnd,
                                      const M& zData,
                                      const Kernel& kernel)
            : Interpolation2D::templateImpl<I1,I2,M>(xBegin, xEnd,
                                                     yBegin, yEnd, zData),
              xSize_(Size(xEnd-xBegin)), ySize_(Size(yEnd-yBegin)),
              xySize_(xSize_*ySize_), invPrec_(1.0e-10),
              alphaVec_(xySize_), yVec_(xySize_),
              M_(xySize_,xySize_),
              kernel_(kernel) {

                QL_REQUIRE(zData.rows()==xSize_,
                           "Z value matrix has wrong number of rows");
                QL_REQUIRE(zData.columns()==ySize_,
                           "Z value matrix has wrong number of columns");
            }

            void calculate() {
                updateAlphaVec();
            }

            Real value(Real x1, Real x2) const {

                Real res=0.0;

                Array X(2),Xn(2);
                X[0]=x1;X[1]=x2;

                Size cnt=0; // counter

                for( Size j=0; j< ySize_;++j){
                    for( Size i=0; i< xSize_;++i){
                        Xn[0]=this->xBegin_[i];
                        Xn[1]=this->yBegin_[j];
                        res+=alphaVec_[cnt]*kernelAbs(X,Xn);
                        cnt++;
                    }
                }
                return res/gammaFunc(X);
            }

            // the calculation will solve y=M*a for a.  Due to
            // singularity or rounding errors the recalculation
            // M*a may not give y. Here, a failure will be thrown if
            // |M*a-y|>=invPrec_
            void setInverseResultPrecision(Real invPrec){
                invPrec_=invPrec;
            }

        private:

            // returns K(||X-Y||) where X,Y are vectors
            Real kernelAbs(const Array& X, const Array& Y)const{
                return kernel_(vecNorm(X-Y));
            }

            Real vecNorm(const Array& X)const{
                return std::sqrt(DotProduct(X,X));
            }

            Real gammaFunc(const Array& X)const{

                Real res=0.0;
                Array Xn(X.size());

                for(Size j=0; j< ySize_;++j){
                    for(Size i=0; i< xSize_;++i){
                        Xn[0]=this->xBegin_[i];
                        Xn[1]=this->yBegin_[j];
                        res+=kernelAbs(X,Xn);
                    }
                }

                return res;
            }

            void updateAlphaVec(){
                // Function calculates the alpha vector with given
                // fixed pillars+values

                Array Xk(2),Xn(2);

                Size rowCnt=0,colCnt=0;
                Real tmpVar=0.0;

                // write y-vector and M-Matrix
                for(Size j=0; j< ySize_;++j){
                    for(Size i=0; i< xSize_;++i){

                        yVec_[rowCnt]=this->zData_[i][j];
                        // calculate X_k
                        Xk[0]=this->xBegin_[i];
                        Xk[1]=this->yBegin_[j];

                        tmpVar=1/gammaFunc(Xk);
                        colCnt=0;

                        for(Size jM=0; jM< ySize_;++jM){
                            for(Size iM=0; iM< xSize_;++iM){
                                Xn[0]=this->xBegin_[iM];
                                Xn[1]=this->yBegin_[jM];
                                M_[rowCnt][colCnt]=kernelAbs(Xk,Xn)*tmpVar;
                                colCnt++; // increase column counter
                            }// end iM
                        }// end jM
                        rowCnt++; // increase row counter
                    } // end i
                }// end j

                alphaVec_=qrSolve(M_, yVec_);

                // check if inversion worked up to a reasonable precision.
                // I've chosen not to check determinant(M_)!=0 before solving

                Array diffVec=Abs(M_*alphaVec_ - yVec_);
                for (Size i=0; i<diffVec.size(); ++i) {
                    QL_REQUIRE(diffVec[i]<invPrec_,
                               "inversion failed in 2d kernel interpolation");
                }
            }

          private:

            Size xSize_,ySize_,xySize_;
            Real invPrec_;
            Array alphaVec_, yVec_;
            Matrix M_;
            Kernel kernel_;
        };

    } // end namespace detail


    /*! Implementation of the 2D kernel interpolation approach, which
        can be found in "Foreign Exchange Risk" by Hakala, Wystup page
        256.

        The kernel in the implementation is kept general, although a
        Gaussian is considered in the cited text.
    */
    class KernelInterpolation2D : public Interpolation2D{
      public:
        /*! \pre the \f$ x \f$ values must be sorted.
            \pre kernel needs a Real operator()(Real x) implementation
        */
        template <class I1, class I2, class M, class Kernel>
        KernelInterpolation2D(const I1& xBegin, const I1& xEnd,
                            const I2& yBegin, const I2& yEnd,
                            const M& zData,
                            const Kernel& kernel) {

            impl_ = boost::shared_ptr<Interpolation2D::Impl>(new
                detail::KernelInterpolation2DImpl<I1,I2,M,Kernel>(xBegin, xEnd,
                                                                  yBegin, yEnd,
                                                                  zData, kernel));
            this->update();
        }
    };
}

#endif