/usr/include/ql/math/interpolations/kernelinterpolation2d.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Dimitri Reiswich
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file kernelinterpolation2d.hpp
\brief 2D Kernel interpolation
*/
#ifndef quantlib_kernel_interpolation2D_hpp
#define quantlib_kernel_interpolation2D_hpp
#include <ql/math/interpolations/interpolation2d.hpp>
#include <ql/math/matrixutilities/qrdecomposition.hpp>
/*
Grid Explanation:
Grid=[ (x1,y1) (x1,y2) (x1,y3)... (x1,yM);
(x2,y1) (x2,y2) (x2,y3)... (x2,yM);
.
.
.
(xN,y1) (xN,y2) (xN,y3)... (xN,yM);
]
The Passed variables are:
- x which is N dimensional
- y which is M dimensional
- zData which is NxM dimensional and has the z values
corresponding to the grid above.
- kernel is a template which needs a Real operator()(Real x) implementation
*/
namespace QuantLib {
namespace detail {
template <class I1, class I2, class M, class Kernel>
class KernelInterpolation2DImpl
: public Interpolation2D::templateImpl<I1,I2,M> {
public:
KernelInterpolation2DImpl(const I1& xBegin, const I1& xEnd,
const I2& yBegin, const I2& yEnd,
const M& zData,
const Kernel& kernel)
: Interpolation2D::templateImpl<I1,I2,M>(xBegin, xEnd,
yBegin, yEnd, zData),
xSize_(Size(xEnd-xBegin)), ySize_(Size(yEnd-yBegin)),
xySize_(xSize_*ySize_), invPrec_(1.0e-10),
alphaVec_(xySize_), yVec_(xySize_),
M_(xySize_,xySize_),
kernel_(kernel) {
QL_REQUIRE(zData.rows()==xSize_,
"Z value matrix has wrong number of rows");
QL_REQUIRE(zData.columns()==ySize_,
"Z value matrix has wrong number of columns");
}
void calculate() {
updateAlphaVec();
}
Real value(Real x1, Real x2) const {
Real res=0.0;
Array X(2),Xn(2);
X[0]=x1;X[1]=x2;
Size cnt=0; // counter
for( Size j=0; j< ySize_;++j){
for( Size i=0; i< xSize_;++i){
Xn[0]=this->xBegin_[i];
Xn[1]=this->yBegin_[j];
res+=alphaVec_[cnt]*kernelAbs(X,Xn);
cnt++;
}
}
return res/gammaFunc(X);
}
// the calculation will solve y=M*a for a. Due to
// singularity or rounding errors the recalculation
// M*a may not give y. Here, a failure will be thrown if
// |M*a-y|>=invPrec_
void setInverseResultPrecision(Real invPrec){
invPrec_=invPrec;
}
private:
// returns K(||X-Y||) where X,Y are vectors
Real kernelAbs(const Array& X, const Array& Y)const{
return kernel_(vecNorm(X-Y));
}
Real vecNorm(const Array& X)const{
return std::sqrt(DotProduct(X,X));
}
Real gammaFunc(const Array& X)const{
Real res=0.0;
Array Xn(X.size());
for(Size j=0; j< ySize_;++j){
for(Size i=0; i< xSize_;++i){
Xn[0]=this->xBegin_[i];
Xn[1]=this->yBegin_[j];
res+=kernelAbs(X,Xn);
}
}
return res;
}
void updateAlphaVec(){
// Function calculates the alpha vector with given
// fixed pillars+values
Array Xk(2),Xn(2);
Size rowCnt=0,colCnt=0;
Real tmpVar=0.0;
// write y-vector and M-Matrix
for(Size j=0; j< ySize_;++j){
for(Size i=0; i< xSize_;++i){
yVec_[rowCnt]=this->zData_[i][j];
// calculate X_k
Xk[0]=this->xBegin_[i];
Xk[1]=this->yBegin_[j];
tmpVar=1/gammaFunc(Xk);
colCnt=0;
for(Size jM=0; jM< ySize_;++jM){
for(Size iM=0; iM< xSize_;++iM){
Xn[0]=this->xBegin_[iM];
Xn[1]=this->yBegin_[jM];
M_[rowCnt][colCnt]=kernelAbs(Xk,Xn)*tmpVar;
colCnt++; // increase column counter
}// end iM
}// end jM
rowCnt++; // increase row counter
} // end i
}// end j
alphaVec_=qrSolve(M_, yVec_);
// check if inversion worked up to a reasonable precision.
// I've chosen not to check determinant(M_)!=0 before solving
Array diffVec=Abs(M_*alphaVec_ - yVec_);
for (Size i=0; i<diffVec.size(); ++i) {
QL_REQUIRE(diffVec[i]<invPrec_,
"inversion failed in 2d kernel interpolation");
}
}
private:
Size xSize_,ySize_,xySize_;
Real invPrec_;
Array alphaVec_, yVec_;
Matrix M_;
Kernel kernel_;
};
} // end namespace detail
/*! Implementation of the 2D kernel interpolation approach, which
can be found in "Foreign Exchange Risk" by Hakala, Wystup page
256.
The kernel in the implementation is kept general, although a
Gaussian is considered in the cited text.
*/
class KernelInterpolation2D : public Interpolation2D{
public:
/*! \pre the \f$ x \f$ values must be sorted.
\pre kernel needs a Real operator()(Real x) implementation
*/
template <class I1, class I2, class M, class Kernel>
KernelInterpolation2D(const I1& xBegin, const I1& xEnd,
const I2& yBegin, const I2& yEnd,
const M& zData,
const Kernel& kernel) {
impl_ = boost::shared_ptr<Interpolation2D::Impl>(new
detail::KernelInterpolation2DImpl<I1,I2,M,Kernel>(xBegin, xEnd,
yBegin, yEnd,
zData, kernel));
this->update();
}
};
}
#endif
|