/usr/include/ql/math/generallinearleastsquares.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Dirk Eddelbuettel
Copyright (C) 2006, 2009, 2010 Klaus Spanderen
Copyright (C) 2010 Kakhkhor Abdijalilov
Copyright (C) 2010 Slava Mazur
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file linearleastsquaresregression.hpp
\brief general linear least square regression
*/
#ifndef quantlib_general_linear_least_squares_hpp
#define quantlib_general_linear_least_squares_hpp
#include <ql/qldefines.hpp>
#include <ql/math/matrixutilities/svd.hpp>
#include <ql/math/array.hpp>
#include <ql/math/functional.hpp>
#include <boost/function.hpp>
#include <boost/type_traits.hpp>
#include <vector>
namespace QuantLib {
//! general linear least squares regression
/*! References:
"Numerical Recipes in C", 2nd edition,
Press, Teukolsky, Vetterling, Flannery,
\test the correctness of the returned values is tested by
checking their properties.
*/
class GeneralLinearLeastSquares {
public:
template <class xContainer, class yContainer, class vContainer>
GeneralLinearLeastSquares(const xContainer & x,
const yContainer &y, const vContainer & v);
template<class xIterator, class yIterator, class vIterator>
GeneralLinearLeastSquares(xIterator xBegin, xIterator xEnd,
yIterator yBegin, yIterator yEnd,
vIterator vBegin, vIterator vEnd);
const Array& coefficients() const { return a_; }
const Array& residuals() const { return residuals_; }
//! standard parameter errors as given by Excel, R etc.
const Array& standardErrors() const { return standardErrors_; }
//! modeling uncertainty as definied in Numerical Recipes
const Array& error() const { return err_;}
Size size() const { return residuals_.size(); }
Size dim() const { return a_.size(); }
protected:
Array a_, err_, residuals_, standardErrors_;
template <class xIterator, class yIterator, class vIterator>
void calculate(
xIterator xBegin, xIterator xEnd,
yIterator yBegin, yIterator yEnd,
vIterator vBegin, vIterator vEnd);
};
template <class xContainer, class yContainer, class vContainer> inline
GeneralLinearLeastSquares::GeneralLinearLeastSquares(const xContainer & x,
const yContainer &y,
const vContainer & v)
: a_(v.size(), 0.0),
err_(v.size(), 0.0),
residuals_(y.size()),
standardErrors_(v.size()) {
calculate(x.begin(), x.end(), y.begin(), y.end(), v.begin(), v.end());
}
template<class xIterator, class yIterator, class vIterator> inline
GeneralLinearLeastSquares::GeneralLinearLeastSquares(
xIterator xBegin, xIterator xEnd,
yIterator yBegin, yIterator yEnd,
vIterator vBegin, vIterator vEnd)
: a_(std::distance(vBegin, vEnd), 0.0),
err_(a_.size(), 0.0),
residuals_(std::distance(yBegin, yEnd)),
standardErrors_(a_.size()) {
calculate(xBegin, xEnd, yBegin, yEnd, vBegin, vEnd);
}
template <class xIterator, class yIterator, class vIterator>
void GeneralLinearLeastSquares::calculate(xIterator xBegin, xIterator xEnd,
yIterator yBegin, yIterator yEnd,
vIterator vBegin, vIterator vEnd) {
const Size n = residuals_.size();
const Size m = err_.size();
QL_REQUIRE( n == Size(std::distance(yBegin, yEnd)),
"sample set need to be of the same size");
QL_REQUIRE(n >= m, "sample set is too small");
Size i;
Matrix A(n, m);
for (i=0; i<m; ++i)
std::transform(xBegin, xEnd, A.column_begin(i), *vBegin++);
const SVD svd(A);
const Matrix& V = svd.V();
const Matrix& U = svd.U();
const Array& w = svd.singularValues();
const Real threshold = n * QL_EPSILON * svd.singularValues()[0];
for (i=0; i<m; ++i) {
if (w[i] > threshold) {
const Real u = std::inner_product(U.column_begin(i),
U.column_end(i),
yBegin, 0.0)/w[i];
for (Size j=0; j<m; ++j) {
a_[j] +=u*V[j][i];
err_[j]+=V[j][i]*V[j][i]/(w[i]*w[i]);
}
}
}
err_ = Sqrt(err_);
Array tmp = A*a_;
std::transform(tmp.begin(), tmp.end(),
yBegin, residuals_.begin(), std::minus<Real>());
const Real chiSq
= std::inner_product(residuals_.begin(), residuals_.end(),
residuals_.begin(), 0.0);
std::transform(err_.begin(), err_.end(), standardErrors_.begin(),
std::bind1st(std::multiplies<Real>(),
std::sqrt(chiSq/(n-2))));
}
}
#endif
|