/usr/include/ql/math/distributions/studenttdistribution.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file studenttdistribution.hpp
\brief Student's t-distribution
*/
#ifndef quantlib_student_t_distribution_hpp
#define quantlib_student_t_distribution_hpp
#include <ql/errors.hpp>
#include <ql/types.hpp>
#include <functional>
namespace QuantLib {
//! Student t-distribution
/*! Probability density function for \f$ n \f$ degrees of freedom
(see mathworld.wolfram.com or wikipedia.org):
\f[
f(x) = \frac {\Gamma\left(\frac{n+1}{2}\right)} {\sqrt{n\pi}
\, \Gamma\left(\frac{n}{2}\right)}\:
\frac {1} {\left(1+\frac{x^2}{n}\right)^{(n+1)/2}}
\f]
*/
class StudentDistribution : public std::unary_function<Real,Real> {
public:
StudentDistribution(Integer n) : n_(n) {
QL_REQUIRE(n > 0, "invalid parameter for t-distribution");
}
Real operator()(Real x) const;
private:
Integer n_;
};
//! Cumulative Student t-distribution
/*! Cumulative distribution function for \f$ n \f$ degrees of freedom
(see mathworld.wolfram.com):
\f[
F(x) = \int_{-\infty}^x\,f(y)\,dy
= \frac{1}{2}\,
+\,\frac{1}{2}\,sgn(x)\,
\left[ I\left(1,\frac{n}{2},\frac{1}{2}\right)
- I\left(\frac{n}{n+y^2}, \frac{n}{2},\frac{1}{2}\right)\right]
\f]
where \f$ I(z; a, b) \f$ is the regularized incomplete beta function.
*/
class CumulativeStudentDistribution
: public std::unary_function<Real,Real> {
public:
CumulativeStudentDistribution(Integer n) : n_(n) {
QL_REQUIRE(n > 0, "invalid parameter for t-distribution");
}
Real operator()(Real x) const;
private:
Integer n_;
};
//! Inverse cumulative Student t-distribution
/*! \todo Find/implement an efficient algorithm for evaluating the
cumulative Student t-distribution, replacing the Newton
iteration
*/
class InverseCumulativeStudent
: public std::unary_function<Real,Real> {
public:
InverseCumulativeStudent(Integer n,
Real accuracy = 1e-6,
Size maxIterations = 50)
: d_(n), f_(n), accuracy_(accuracy),
maxIterations_(maxIterations) {}
Real operator()(Real x) const;
private:
StudentDistribution d_;
CumulativeStudentDistribution f_;
Real accuracy_;
Size maxIterations_;
};
}
#endif
|