This file is indexed.

/usr/include/ql/math/distributions/binomialdistribution.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 Ferdinando Ametrano

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file binomialdistribution.hpp
    \brief Binomial distribution
*/

#ifndef quantlib_binomial_distribution_h
#define quantlib_binomial_distribution_h

#include <ql/math/factorial.hpp>
#include <ql/math/beta.hpp>

namespace QuantLib {

    inline Real binomialCoefficientLn(BigNatural n, BigNatural k) {

        QL_REQUIRE(n>=k, "n<k not allowed");

        return Factorial::ln(n)-Factorial::ln(k)-Factorial::ln(n-k);

    }

    inline Real binomialCoefficient(BigNatural n, BigNatural k) {

        return std::floor(0.5+std::exp(binomialCoefficientLn(n, k)));

    }

    //! Binomial probability distribution function
    /*! formula here ...
        Given an integer k it returns its probability in a Binomial
        distribution with parameters p and n.
    */
    class BinomialDistribution : public std::unary_function<Real,Real> {
      public:
        BinomialDistribution(Real p, BigNatural n);
        // function
        Real operator()(BigNatural k) const;
      private:
        BigNatural n_;
        Real logP_, logOneMinusP_;
    };

    //! Cumulative binomial distribution function
    /*! Given an integer k it provides the cumulative probability
        of observing kk<=k:
        formula here ...

    */
    class CumulativeBinomialDistribution
    : public std::unary_function<Real,Real> {
      public:
        CumulativeBinomialDistribution(Real p, BigNatural n);
        // function
        Real operator()(BigNatural k) const {
            if (k >= n_)
                return 1.0;
            else
                return 1.0 - incompleteBetaFunction(k+1, n_-k, p_);
        }
      private:
        BigNatural n_;
        Real p_;
    };


    inline BinomialDistribution::BinomialDistribution(Real p,
                                                      BigNatural n)
    : n_(n) {

        if (p==0.0) {
            logP_ = -QL_MAX_REAL;
            logOneMinusP_ = 0.0;
        } else if (p==1.0) {
            logP_ = 0.0;
            logOneMinusP_ = -QL_MAX_REAL;
        } else {
            QL_REQUIRE(p>0, "negative p not allowed");
            QL_REQUIRE(p<1.0, "p>1.0 not allowed");

            logP_ = std::log(p);
            logOneMinusP_ = std::log(1.0-p);
        }
    }


    inline
    CumulativeBinomialDistribution::CumulativeBinomialDistribution(
                                                       Real p, BigNatural n)
    : n_(n), p_(p) {

        QL_REQUIRE(p>=0, "negative p not allowed");
        QL_REQUIRE(p<=1.0, "p>1.0 not allowed");

    }

    inline Real BinomialDistribution::operator()(BigNatural k) const {

        if (k > n_) return 0.0;

        // p==1.0
        if (logP_==0.0)
            return (k==n_ ? 1.0 : 0.0);
        // p==0.0
        else if (logOneMinusP_==0.0)
            return (k==0 ? 1.0 : 0.0);
        else
            return std::exp(binomialCoefficientLn(n_, k) +
                            k * logP_ + (n_-k) * logOneMinusP_);
    }



    /*! Given an odd integer n and a real number z it returns p such that:
        1 - CumulativeBinomialDistribution((n-1)/2, n, p) =
                               CumulativeNormalDistribution(z)

        \pre n must be odd
    */
    inline Real PeizerPrattMethod2Inversion(Real z, BigNatural n) {

        QL_REQUIRE(n%2==1,
                   "n must be an odd number: " << n << " not allowed");

        Real result = (z/(n+1.0/3.0+0.1/(n+1.0)));
        result *= result;
        result = std::exp(-result*(n+1.0/6.0));
        result = 0.5 + (z>0 ? 1 : -1) * std::sqrt((0.25 * (1.0-result)));
        return result;
    }

}


#endif