This file is indexed.

/usr/include/ql/math/autocovariance.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2010 Liquidnet Holdings, Inc.

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file autocovariance.hpp
    \brief autocovariance and convolution calculation
*/

#ifndef quantlib_auto_covariance_hpp
#define quantlib_auto_covariance_hpp

#include <ql/math/fastfouriertransform.hpp>
#include <ql/math/array.hpp>
#include <complex>
#include <vector>
#include <algorithm>
#include <functional>

namespace QuantLib {

    namespace detail {

        // Outputs double FT for a given input:
        // input -> FFT -> norm -> FFT -> out
        template <typename ForwardIterator>
        std::vector<std::complex<Real> > double_ft(ForwardIterator begin,
                                                   ForwardIterator end) {
            std::size_t nData = std::distance(begin, end);
            std::size_t order = FastFourierTransform::min_order(nData) + 1;
            FastFourierTransform fft(order);
            std::vector<std::complex<Real> > ft(fft.output_size());
            fft.transform(begin, end, ft.begin());
            Array tmp(ft.size(), 0.0);
            std::complex<Real> z = std::complex<Real>();
            for (Size i=0; i<ft.size(); ++i) {
                tmp[i] = std::norm<Real>(ft[i]);
                ft[i] = z;
            }
            fft.transform(tmp.begin(), tmp.end(), ft.begin());
            return ft;
        }


        // Calculates and subtracts mean from the input data; returns mean
        template <typename InputIterator, typename OutputIterator>
        Real remove_mean(InputIterator begin, InputIterator end,
                         OutputIterator out) {
            Real mean(0.0);
            std::size_t n = 1;
            for (InputIterator it = begin; it != end; ++it, ++n)
                mean = (mean*Real(n-1) + *it)/n;
            std::transform(begin, end, out,
                           std::bind2nd(std::minus<Real>(), mean));
            return mean;
        }

    }


    //! Convolutions of the input sequence.
    /*! Calculates x[0]*x[n]+x[1]*x[n+1]+x[2]*x[n+2]+...
        for n = 0,1,...,maxLag via FFT.

        \pre The size of the output sequence must be maxLag + 1
    */
    template <typename ForwardIterator, typename OutputIterator>
    void convolutions(ForwardIterator begin, ForwardIterator end,
                      OutputIterator out, std::size_t maxLag) {
        using namespace detail;
        std::size_t nData = std::distance(begin, end);
        QL_REQUIRE(maxLag < nData, "maxLag must be less than data size");
        const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
        Real w = 1.0 / (Real)ft.size();
        for (std::size_t k = 0; k <= maxLag; ++k)
            *out++ = ft[k].real() * w;
    }

    //! Unbiased auto-covariances
    /*! Results are calculated via FFT.

        \pre Input data are supposed to be centered (i.e., zero mean).
        \pre The size of the output sequence must be maxLag + 1
    */
    template <typename ForwardIterator, typename OutputIterator>
    void autocovariances(ForwardIterator begin, ForwardIterator end,
                         OutputIterator out, std::size_t maxLag) {
        using namespace detail;
        std::size_t nData = std::distance(begin, end);
        QL_REQUIRE(maxLag < nData,
                   "number of covariances must be less than data size");
        const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
        Real w1 = 1.0 / (Real)ft.size(), w2 = (Real)nData;
        for (std::size_t k = 0; k <= maxLag; ++k, w2 -= 1.0) {
            *out++ = ft[k].real() * w1 / w2;
        }
    }

    //! Unbiased auto-covariances
    /*! Results are calculated via FFT.

        This overload accepts non-centered data, removes the mean and
        returns it as a result.  The centered sequence is written back
        into the input sequence if the reuse parameter is true.

        \pre The size of the output sequence must be maxLag + 1
    */
    template <typename ForwardIterator, typename OutputIterator>
    Real autocovariances(ForwardIterator begin, ForwardIterator end,
                         OutputIterator out,
                         std::size_t maxLag, bool reuse) {
        using namespace detail;
        Real mean = 0.0;
        if (reuse) {
            mean = remove_mean(begin, end, begin);
            autocovariances(begin, end, out, maxLag);
        } else {
            Array tmp(std::distance(begin, end));
            mean = remove_mean(begin, end, tmp.begin());
            autocovariances(tmp.begin(), tmp.end(), out, maxLag);
        }
        return mean;
    }


    //! Unbiased auto-correlations.
    /*! Results are calculated via FFT.
        The first element of the output is the unbiased sample variance.

        \pre Input data are supposed to be centered (i.e., zero mean).
        \pre The size of the output sequence must be maxLag + 1
    */
    template <typename ForwardIterator, typename OutputIterator>
    void autocorrelations(ForwardIterator begin, ForwardIterator end,
                          OutputIterator out, std::size_t maxLag) {
        using namespace detail;
        std::size_t nData = std::distance(begin, end);
        QL_REQUIRE(maxLag < nData,
                   "number of correlations must be less than data size");
        const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
        Real w1 = 1.0 / (Real)ft.size(), w2 = (Real)nData;
        Real variance = ft[0].real() * w1 / w2;
        *out++ = variance * w2 / (w2-1.0);
        w2 -= 1.0;
        for (std::size_t k = 1; k <= maxLag; ++k, w2 -= 1.0)
            *out++ = ft[k].real() * w1 / (variance * w2);
    }

    //! Unbiased auto-correlations.
    /*! Results are calculated via FFT.
        The first element of the output is the unbiased sample variance.

        This overload accepts non-centered data, removes the mean and
        returns it as a result.  The centered sequence is written back
        into the input sequence if the reuse parameter is true.

        \pre The size of the output sequence must be maxLag + 1
    */
    template <typename ForwardIterator, typename OutputIterator>
    Real autocorrelations(ForwardIterator begin, ForwardIterator end,
                          OutputIterator out,
                          std::size_t maxLag, bool reuse) {
        using namespace detail;
        Real mean = 0.0;
        if (reuse) {
            mean = remove_mean(begin, end, begin);
            autocorrelations(begin, end, out, maxLag);
        } else {
            Array tmp(std::distance(begin, end));
            mean = remove_mean(begin, end, tmp.begin());
            autocorrelations(tmp.begin(), tmp.end(), out, maxLag);
        }
        return mean;
    }

}

#endif