This file is indexed.

/usr/include/ql/math/abcdmathfunction.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006, 2007, 2015 Ferdinando Ametrano
 Copyright (C) 2006 Cristina Duminuco
 Copyright (C) 2007 Giorgio Facchinetti
 Copyright (C) 2015 Paolo Mazzocchi

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_abcd_math_function_hpp
#define quantlib_abcd_math_function_hpp

#include <ql/types.hpp>
#include <ql/errors.hpp>
#include <vector>

namespace QuantLib {

    //! %Abcd functional form
    /*! \f[ f(t) = [ a + b*t ] e^{-c*t} + d \f]
        following Rebonato's notation. */
    class AbcdMathFunction : public std::unary_function<Time, Real> {

      public:
        AbcdMathFunction(Real a = 0.002,
                         Real b = 0.001, 
                         Real c = 0.16,
                         Real d = 0.0005);
        AbcdMathFunction(const std::vector<Real>& abcd);

        //! function value at time t: \f[ f(t) \f]
        Real operator()(Time t) const;

        //! time at which the function reaches maximum (if any)
        Time maximumLocation() const;

        //! maximum value of the function
        Real maximumValue() const;

        //! function value at time +inf: \f[ f(\inf) \f]
        Real longTermValue() const { return d_; }

        /*! first derivative of the function at time t
            \f[ f'(t) = [ (b-c*a) + (-c*b)*t) ] e^{-c*t} \f] */
        Real derivative(Time t) const;
        
        /*! indefinite integral of the function at time t
            \f[ \int f(t)dt = [ (-a/c-b/c^2) + (-b/c)*t ] e^{-c*t} + d*t \f] */
        Real primitive(Time t) const;
        
        /*! definite integral of the function between t1 and t2
            \f[ \int_{t1}^{t2} f(t)dt \f] */
        Real definiteIntegral(Time t1, Time t2) const;

        /*! Inspectors */
        Real a() const { return a_; }
        Real b() const { return b_; }
        Real c() const { return c_; }
        Real d() const { return d_; }
        const std::vector<Real>& coefficients() { return abcd_; }
        const std::vector<Real>& derivativeCoefficients() { return dabcd_; }
        // the primitive is not abcd

        /*! coefficients of a AbcdMathFunction defined as definite
            integral on a rolling window of length tau, with tau = t2-t */
        std::vector<Real> definiteIntegralCoefficients(Time t,
                                                       Time t2) const;

        /*! coefficients of a AbcdMathFunction defined as definite
            derivative on a rolling window of length tau, with tau = t2-t */
        std::vector<Real> definiteDerivativeCoefficients(Time t,
                                                         Time t2) const;

        static void validate(Real a,
                             Real b,
                             Real c,
                             Real d);
      protected:
        Real a_, b_, c_, d_;
      private:
        void initialize_();
        std::vector<Real> abcd_;
        std::vector<Real> dabcd_;
        Real da_, db_;
        Real pa_, pb_, K_;

        Real dibc_, diacplusbcc_;
    };

    // inline AbcdMathFunction
    inline Real AbcdMathFunction::operator()(Time t) const {
        //return (a_ + b_*t)*std::exp(-c_*t) + d_;
        return t<0 ? 0.0 : (a_ + b_*t)*std::exp(-c_*t) + d_;
    }

    inline Real AbcdMathFunction::derivative(Time t) const {
        //return (da_ + db_*t)*std::exp(-c_*t);
        return t<0 ? 0.0 : (da_ + db_*t)*std::exp(-c_*t);
    }

    inline Real AbcdMathFunction::primitive(Time t) const {
        //return (pa_ + pb_*t)*std::exp(-c_*t) + d_*t + K_;
        return t<0 ? 0.0 : (pa_ + pb_*t)*std::exp(-c_*t) + d_*t + K_;
    }

    inline Real AbcdMathFunction::maximumValue() const {
        if (b_==0.0 || a_<=0.0)
            return d_;
        return this->operator()(maximumLocation());
    }

}

#endif