/usr/include/ql/experimental/volatility/zabrsmilesection.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file zabrsmilesection.hpp
\brief zabr smile section
*/
#ifndef quantlib_zabr_smile_section_hpp
#define quantlib_zabr_smile_section_hpp
#include <ql/pricingengines/blackformula.hpp>
#include <ql/termstructures/volatility/smilesection.hpp>
#include <ql/time/daycounters/actual365fixed.hpp>
#include <ql/experimental/volatility/zabr.hpp>
#include <ql/termstructures/volatility/smilesectionutils.hpp>
#include <vector>
using std::exp;
namespace QuantLib {
// Evaluation Tags
struct ZabrShortMaturityLognormal {};
struct ZabrShortMaturityNormal {};
struct ZabrLocalVolatility {};
struct ZabrFullFd {};
template <typename Evaluation> class ZabrSmileSection : public SmileSection {
public:
ZabrSmileSection(Time timeToExpiry, Rate forward,
const std::vector<Real> &zabrParameters,
const std::vector<Real> &moneyness = std::vector<Real>(),
const Size fdRefinement = 5);
ZabrSmileSection(const Date &d, Rate forward,
const std::vector<Real> &zabrParameters,
const DayCounter &dc = Actual365Fixed(),
const std::vector<Real> &moneyness = std::vector<Real>(),
const Size fdRefinement = 5);
Real minStrike() const { return 0.0; }
Real maxStrike() const { return QL_MAX_REAL; }
Real atmLevel() const { return model_->forward(); }
Real optionPrice(Rate strike, Option::Type type = Option::Call,
Real discount = 1.0) const {
return optionPrice(strike, type, discount, Evaluation());
}
boost::shared_ptr<ZabrModel> model() { return model_; }
protected:
Volatility volatilityImpl(Rate strike) const {
return volatilityImpl(strike, Evaluation());
}
private:
void init(const std::vector<Real> &moneyness) {
init(moneyness, Evaluation());
init2(Evaluation());
init3(Evaluation());
}
void init(const std::vector<Real> &moneyness, ZabrShortMaturityLognormal);
void init(const std::vector<Real> &moneyness, ZabrShortMaturityNormal);
void init(const std::vector<Real> &moneyness, ZabrLocalVolatility);
void init(const std::vector<Real> &moneyness, ZabrFullFd);
void init2(ZabrShortMaturityLognormal);
void init2(ZabrShortMaturityNormal);
void init2(ZabrLocalVolatility);
void init2(ZabrFullFd);
void init3(ZabrShortMaturityLognormal);
void init3(ZabrShortMaturityNormal);
void init3(ZabrLocalVolatility);
void init3(ZabrFullFd);
Real optionPrice(Rate strike, Option::Type type, Real discount,
ZabrShortMaturityLognormal) const;
Real optionPrice(Rate strike, Option::Type type, Real discount,
ZabrShortMaturityNormal) const;
Real optionPrice(Rate strike, Option::Type type, Real discount,
ZabrLocalVolatility) const;
Real optionPrice(Rate strike, Option::Type type, Real discount,
ZabrFullFd) const;
Volatility volatilityImpl(Rate strike, ZabrShortMaturityLognormal) const;
Volatility volatilityImpl(Rate strike, ZabrShortMaturityNormal) const;
Volatility volatilityImpl(Rate strike, ZabrLocalVolatility) const;
Volatility volatilityImpl(Rate strike, ZabrFullFd) const;
boost::shared_ptr<ZabrModel> model_;
Evaluation evaluation_;
Rate forward_;
std::vector<Real> params_;
const Size fdRefinement_;
std::vector<Real> strikes_, callPrices_;
boost::shared_ptr<Interpolation> callPriceFct_;
Real a_, b_;
};
template <typename Evaluation>
ZabrSmileSection<Evaluation>::ZabrSmileSection(
Time timeToExpiry, Rate forward, const std::vector<Real> &zabrParams,
const std::vector<Real> &moneyness, const Size fdRefinement)
: SmileSection(timeToExpiry, DayCounter()), forward_(forward),
params_(zabrParams), fdRefinement_(fdRefinement) {
init(moneyness);
}
template <typename Evaluation>
ZabrSmileSection<Evaluation>::ZabrSmileSection(
const Date &d, Rate forward, const std::vector<Real> &zabrParams,
const DayCounter &dc, const std::vector<Real> &moneyness,
const Size fdRefinement)
: SmileSection(d, dc, Date()), forward_(forward), params_(zabrParams),
fdRefinement_(fdRefinement) {
init(moneyness);
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init(const std::vector<Real> &,
ZabrShortMaturityLognormal) {
model_ = boost::shared_ptr<ZabrModel>(
new ZabrModel(exerciseTime(), forward_, params_[0], params_[1],
params_[2], params_[3], params_[4]));
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init(const std::vector<Real> &a,
ZabrShortMaturityNormal) {
init(a, ZabrShortMaturityLognormal());
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init(const std::vector<Real> &moneyness,
ZabrLocalVolatility) {
QL_REQUIRE(params_.size() >= 5,
"zabr expects 5 parameters (alpha,beta,nu,rho,gamma) but ("
<< params_.size() << ") given");
model_ = boost::shared_ptr<ZabrModel>(
new ZabrModel(exerciseTime(), forward_, params_[0], params_[1],
params_[2], params_[3], params_[4]));
// set up strike grid for local vol or full fd flavour of this section
// this is shared with SmileSectionUtils - unify later ?
static const Real defaultMoney[] = {
0.0, 0.01, 0.05, 0.10, 0.25, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90,
1.0, 1.25, 1.5, 1.75, 2.0, 5.0, 7.5, 10.0, 15.0, 20.0};
std::vector<Real> tmp;
if (moneyness.size() == 0)
tmp = std::vector<Real>(defaultMoney, defaultMoney + 21);
else
tmp = std::vector<Real>(moneyness);
strikes_.clear(); // should not be necessary, anyway
Real lastF = 0.0;
bool firstStrike = true;
for (Size i = 0; i < tmp.size(); i++) {
Real f = tmp[i] * forward_;
if (f > 0.0) {
if (!firstStrike) {
for (Size j = 1; j <= fdRefinement_; ++j) {
strikes_.push_back(lastF +
((double)j) * (f - lastF) /
(fdRefinement_ + 1));
}
}
firstStrike = false;
lastF = f;
strikes_.push_back(f);
}
}
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init(const std::vector<Real> &moneyness,
ZabrFullFd) {
init(moneyness, ZabrLocalVolatility());
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init2(ZabrShortMaturityLognormal) {}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init2(ZabrShortMaturityNormal) {}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init2(ZabrLocalVolatility) {
callPrices_ = model_->fdPrice(strikes_);
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init2(ZabrFullFd) {
callPrices_.resize(strikes_.size());
#pragma omp parallel for
for (Size i = 0; i < strikes_.size(); i++) {
callPrices_[i] = model_->fullFdPrice(strikes_[i]);
}
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init3(ZabrShortMaturityLognormal) {}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init3(ZabrShortMaturityNormal) {}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init3(ZabrLocalVolatility) {
strikes_.insert(strikes_.begin(), 0.0);
callPrices_.insert(callPrices_.begin(), forward_);
callPriceFct_ = boost::shared_ptr<Interpolation>(new CubicInterpolation(
strikes_.begin(), strikes_.end(), callPrices_.begin(),
CubicInterpolation::Spline, true, CubicInterpolation::SecondDerivative,
0.0, CubicInterpolation::SecondDerivative, 0.0));
// callPriceFct_ =
// boost::shared_ptr<Interpolation>(new LinearInterpolation(
// strikes_.begin(), strikes_.end(), callPrices_.begin()));
callPriceFct_->enableExtrapolation();
// on the right side we extrapolate exponetially (because spline
// does not make sense)
// we precompute the necessary parameters here
static const Real eps = 1E-5; // gap for first derivative computation
Real c0 = callPriceFct_->operator()(strikes_.back());
Real c0p = (callPriceFct_->operator()(strikes_.back() - eps) - c0) / eps;
a_ = c0p / c0;
b_ = std::log(c0) + a_ * strikes_.back();
}
template <typename Evaluation>
void ZabrSmileSection<Evaluation>::init3(ZabrFullFd) {
init3(ZabrLocalVolatility());
}
template <typename Evaluation>
Real
ZabrSmileSection<Evaluation>::optionPrice(Real strike, Option::Type type,
Real discount,
ZabrShortMaturityLognormal) const {
return SmileSection::optionPrice(strike, type, discount);
}
template <typename Evaluation>
Real ZabrSmileSection<Evaluation>::optionPrice(Real strike, Option::Type type,
Real discount,
ZabrShortMaturityNormal) const {
return bachelierBlackFormula(
type, strike, forward_,
model_->normalVolatility(strike) * std::sqrt(exerciseTime()), discount);
}
template <typename Evaluation>
Real ZabrSmileSection<Evaluation>::optionPrice(Rate strike, Option::Type type,
Real discount,
ZabrLocalVolatility) const {
Real call = strike <= strikes_.back() ? callPriceFct_->operator()(strike)
: exp(-a_ * strike + b_);
if (type == Option::Call)
return call * discount;
else
return (call - (forward_ - strike)) * discount;
}
template <typename Evaluation>
Real ZabrSmileSection<Evaluation>::optionPrice(Rate strike, Option::Type type,
Real discount,
ZabrFullFd) const {
return optionPrice(strike, type, discount, ZabrLocalVolatility());
}
template <typename Evaluation>
Real
ZabrSmileSection<Evaluation>::volatilityImpl(Rate strike,
ZabrShortMaturityLognormal) const {
strike = std::max(1E-6, strike);
return model_->lognormalVolatility(strike);
}
template <typename Evaluation>
Real
ZabrSmileSection<Evaluation>::volatilityImpl(Rate strike,
ZabrShortMaturityNormal) const {
Real impliedVol = 0.0;
try {
Option::Type type;
if (strike >= model_->forward())
type = Option::Call;
else
type = Option::Put;
impliedVol =
blackFormulaImpliedStdDev(type, strike, model_->forward(),
optionPrice(strike, type, 1.0), 1.0) /
std::sqrt(exerciseTime());
} catch (...) {
}
return impliedVol;
}
template <typename Evaluation>
Real ZabrSmileSection<Evaluation>::volatilityImpl(Rate strike,
ZabrLocalVolatility) const {
return volatilityImpl(strike, ZabrShortMaturityNormal());
}
template <typename Evaluation>
Real ZabrSmileSection<Evaluation>::volatilityImpl(Rate strike,
ZabrFullFd) const {
return volatilityImpl(strike, ZabrShortMaturityNormal());
}
}
#endif
|