This file is indexed.

/usr/include/ql/experimental/math/particleswarmoptimization.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
Copyright (C) 2015 Andres Hernandez

This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/

QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license.  You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file particleswarmoptimization.hpp
\brief Implementation based on:
Clerc, M., Kennedy, J. (2002) The particle swarm-explosion, stability and
convergence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 6(2): 58–73.
*/

#ifndef quantlib_optimization_particleswarmoptimization_hpp
#define quantlib_optimization_particleswarmoptimization_hpp

#include <ql/qldefines.hpp>

#if BOOST_VERSION >= 104700

#include <ql/math/optimization/problem.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/experimental/math/isotropicrandomwalk.hpp>
#include <ql/experimental/math/levyflightdistribution.hpp>

#include <boost/random/mersenne_twister.hpp>
typedef boost::mt19937 base_generator_type;

#include <boost/random/uniform_int_distribution.hpp>
typedef boost::random::uniform_int_distribution<QuantLib::Size> uniform_integer;

namespace QuantLib {

    /*! The process is as follows:
    M individuals are used to explore the N-dimensional parameter space
    X_{i}^k = (X_{i, 1}^k, X_{i, 2}^k, \ldots, X_{i, N}^k) is the kth-iteration for the ith-individual
    X is updated via the rule
    X_{i, j}^{k+1} = X_{i, j}^k + V_{i, j}^{k+1}
    with V being the "velocity" that updates the position:
    V_{i, j}^{k+1} = \chi\left(V_{i, j}^k + c_1 r_{i, j}^k (P_{i, j}^k - X_{i, j}^k)
    + c_2 R_{i, j}^k (G_{i, j}^k - X_{i, j}^k)\right)
    where c are constants, r and R are uniformly distributed random numbers in the range [0, 1], and
    P_{i, j} is the personal best parameter set for individual i up to iteration k
    G_{i, j} is the global best parameter set for the swarm up to iteration k.
    c_1 is the self recognition coefficient
    c_2 is the social recognition coefficient

    This version is known as the PSO with constriction factor (PSO-Co).
    PSO with inertia factor (PSO-In) updates the velocity according to:
    V_{i, j}^{k+1} = \omega V_{i, j}^k + \hat{c}_1 r_{i, j}^k (P_{i, j}^k - X_{i, j}^k)
    + \hat{c}_2 R_{i, j}^k (G_{i, j}^k - X_{i, j}^k)
    and is accessible from PSO-Co by setting \omega = \chi, and \hat{c}_{1,2} = \chi c_{1,2}

    These two versions of PSO are normally referred to as canonical PSO.

    Convergence of PSO-Co is improved if \chi is chosen as
    \chi = \frac{2}{\vert 2-\phi-\sqrt{\phi^2 - 4\phi}\vert}, with \phi = c_1 + c_2
    Stable convergence is achieved if \phi >= 4. Clerc and Kennedy recommend
    c_1 = c_2 = 2.05 and \phi = 4.1

    Different topologies can be chosen for G, e.g. instead of it being the best
    of the swarm, it is the best of the nearest neighbours, or some other form.

    In the canonical PSO, the inertia function is trivial. It is simply a
    constant (the inertia) multiplying the previous iteration's velocity. The
    value of the inertia constant determines the weight of a global search over
    local search. Like in the case of the topology, other possibilities for the
    inertia function are also possible, e.g. a function that interpolates between a
    high inertia at the beginning of the optimization (hence prioritizing a global
    search) and a low inertia towards the end of the optimization (hence prioritizing
    a local search).

    The optimization stops either because the number of iterations has been reached
    or because the stationary function value limit has been reached.
    */
    class ParticleSwarmOptimization : public OptimizationMethod {
      public:
        class Inertia;
        class Topology;
        friend class Inertia;
        friend class Topology;
        ParticleSwarmOptimization(Size M,
            boost::shared_ptr<Topology> topology,
            boost::shared_ptr<Inertia> inertia,
            Real c1 = 2.05, Real c2 = 2.05,
            unsigned long seed = 0);
        ParticleSwarmOptimization(const Size M,
            boost::shared_ptr<Topology> topology,
            boost::shared_ptr<Inertia> inertia,
            Real omega, Real c1, Real c2,
            unsigned long seed = 0);
        void startState(Problem &P, const EndCriteria &endCriteria);
        EndCriteria::Type minimize(Problem &P, const EndCriteria &endCriteria);

      protected:
        std::vector<Array> X_, V_, pBX_, gBX_;
        Array pBF_, gBF_;
        Array lX_, uX_;
        Size M_, N_;
        Real c0_, c1_, c2_;
        MersenneTwisterUniformRng rng_;
        boost::shared_ptr<Topology> topology_;
        boost::shared_ptr<Inertia> inertia_;
    };

    //! Base inertia class used to alter the PSO state
    /*! This pure virtual base class provides the access to the PSO state
    which the particular inertia algorithm will change upon each iteration.
    */
    class ParticleSwarmOptimization::Inertia {
        friend class ParticleSwarmOptimization;
      public:
        virtual ~Inertia() {}
        //! initialize state for current problem
        virtual void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) = 0;
        //! produce changes to PSO state for current iteration
        virtual void setValues() = 0;
      protected:
        ParticleSwarmOptimization *pso_;
        std::vector<Array> *X_, *V_, *pBX_, *gBX_;
        Array *pBF_, *gBF_;
        Array *lX_, *uX_;
      private:
        void init(ParticleSwarmOptimization *pso) {
            pso_ = pso;
            X_ = &pso_->X_;
            V_ = &pso_->V_;
            pBX_ = &pso_->pBX_;
            gBX_ = &pso_->gBX_;
            pBF_ = &pso_->pBF_;
            gBF_ = &pso_->gBF_;
            lX_ = &pso_->lX_;
            uX_ = &pso_->uX_;
        }
    };

    //! Trivial Inertia
    /*     Inertia is a static value
    */
    class TrivialInertia : public ParticleSwarmOptimization::Inertia {
      public:
        inline void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) {
            c0_ = c0;
            M_ = M;
        }
        inline void setValues() {
            for (Size i = 0; i < M_; i++) {
                (*V_)[i] *= c0_;
            }
        }
      private:
        Real c0_;
        Size M_;
    };

    //! Simple Random Inertia
    /*     Inertia value gets multiplied with a random number
    between (threshhold, 1)
    */
    class SimpleRandomInertia : public ParticleSwarmOptimization::Inertia {
      public:
        SimpleRandomInertia(Real threshhold = 0.5, unsigned long seed = 0)
            : threshhold_(threshhold), rng_(seed) {
            QL_REQUIRE(threshhold_ >= 0.0 && threshhold_ < 1.0, "Threshhold must be a Real in [0, 1)");
        }
        inline void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) {
            M_ = M;
            c0_ = c0;
        }
        inline void setValues() {
            for (Size i = 0; i < M_; i++) {
                Real val = c0_*(threshhold_ + (1.0 - threshhold_)*rng_.nextReal());
                (*V_)[i] *= val;
            }
        }
      private:
        Real c0_, threshhold_;
        Size M_;
        MersenneTwisterUniformRng rng_;
    };

    //! Decreasing Inertia
    /*     Inertia value gets decreased every iteration until it reaches
    a value of threshhold when iteration reaches the maximum level
    */
    class DecreasingInertia : public ParticleSwarmOptimization::Inertia {
      public:
        DecreasingInertia(Real threshhold = 0.5)
            : threshhold_(threshhold) {
            QL_REQUIRE(threshhold_ >= 0.0 && threshhold_ < 1.0, "Threshhold must be a Real in [0, 1)");
        }
        inline void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) {
            N_ = N;
            c0_ = c0;
            iteration_ = 0;
            maxIterations_ = endCriteria.maxIterations();
        }
        inline void setValues() {
            Real c0 = c0_*(threshhold_ + (1.0 - threshhold_)*(maxIterations_ - iteration_) / maxIterations_);
            for (Size i = 0; i < M_; i++) {
                (*V_)[i] *= c0;
            }
        }
      private:
        Real c0_, threshhold_;
        Size M_, N_, maxIterations_, iteration_;
    };

    //! AdaptiveInertia
    /*    Alen Lukic, Approximating Kinetic Parameters Using Particle
    Swarm Optimization.
    */
    class AdaptiveInertia : public ParticleSwarmOptimization::Inertia {
      public:
        AdaptiveInertia(Real minInertia, Real maxInertia, Size sh = 5, Size sl = 2)
            :minInertia_(minInertia), maxInertia_(maxInertia),
            sh_(sh), sl_(sl) {};
        inline void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) {
            M_ = M;
            c0_ = c0;
            adaptiveCounter = 0;
            best_ = QL_MAX_REAL;
            started_ = false;
        }
        void setValues();
      private:
        Real c0_, best_;
        Real minInertia_, maxInertia_;
        Size M_;
        Size sh_, sl_;
        Size adaptiveCounter;
        bool started_;
    };

    //! Levy Flight Inertia
    /*    As long as the particle keeps getting frequent updates to its
    personal best value, the inertia behaves like a SimpleRandomInertia,
    but after a number of iterations without improvement, the behaviour
    changes to that of a Levy flight ~ u^{-1/\alpha}
    */
    class LevyFlightInertia : public ParticleSwarmOptimization::Inertia {
      public:
        typedef IsotropicRandomWalk<LevyFlightDistribution, base_generator_type> IsotropicLevyFlight;
        LevyFlightInertia(Real alpha, Size threshhold, 
                          unsigned long seed = 0)
            :flight_(base_generator_type(seed), LevyFlightDistribution(1.0, alpha), 
                1, Array(1, 1.0), seed),
            threshhold_(threshhold) {};
        inline void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) {
            M_ = M;
            N_ = N;
            c0_ = c0;
            personalBestF_ = *pBF_;
            adaptiveCounter_ = std::vector<Size>(M_, 0);
            flight_.setDimension(N_, *lX_, *uX_);
        }
        inline void setValues() {
            for (Size i = 0; i < M_; i++) {
                if ((*pBF_)[i] < personalBestF_[i]) {
                    personalBestF_[i] = (*pBF_)[i];
                    adaptiveCounter_[i] = 0;
                }
                else {
                    adaptiveCounter_[i]++;
                }
                if (adaptiveCounter_[i] <= threshhold_) {
                    //Simple Random Inertia
                    (*V_)[i] *= c0_*(0.5 + 0.5*rng_.nextReal());
                }
                else {
                    //If particle has not found a new personal best after threshhold_ iterations
                    //then trigger a Levy flight pattern for the speed
                    flight_.nextReal<Real *>(&(*V_)[i][0]);
                }
            }
        }
      private:
        MersenneTwisterUniformRng rng_;
        IsotropicLevyFlight flight_;
        Array personalBestF_;
        std::vector<Size> adaptiveCounter_;
        Real c0_;
        Size M_, N_;
        Size threshhold_;
    };

    //! Base topology class used to determine the personal and global best
    /*! This pure virtual base class provides the access to the PSO state
    which the particular topology algorithm will change upon each iteration.
    */
    class ParticleSwarmOptimization::Topology {
        friend class ParticleSwarmOptimization;
      public:
        virtual ~Topology() {}
        //! initialize state for current problem
        virtual void setSize(Size M) = 0;
        //! produce changes to PSO state for current iteration
        virtual void findSocialBest() = 0;
      protected:
        ParticleSwarmOptimization *pso_;
        std::vector<Array> *X_, *V_, *pBX_, *gBX_;
        Array *pBF_, *gBF_;
      private:
        void init(ParticleSwarmOptimization *pso) {
            pso_ = pso;
            X_ = &pso_->X_;
            V_ = &pso_->V_;
            pBX_ = &pso_->pBX_;
            gBX_ = &pso_->gBX_;
            pBF_ = &pso_->pBF_;
            gBF_ = &pso_->gBF_;
        }
    };

    //! Global Topology
    /*  The global best as seen by each particle is the best from amongst
    all particles
    */
    class GlobalTopology : public ParticleSwarmOptimization::Topology {
      public:
        inline void setSize(Size M) { M_ = M; }
        inline void findSocialBest() {
            Real bestF = (*pBF_)[0];
            Size bestP = 0;
            for (Size i = 1; i < M_; i++) {
                if (bestF < (*pBF_)[i]) {
                    bestF = (*pBF_)[i];
                    bestP = i;
                }
            }
            Array& x = (*pBX_)[bestP];
            for (Size i = 0; i < M_; i++) {
                if (i != bestP) {
                    (*gBX_)[i] = x;
                    (*gBF_)[i] = bestF;
                }
            }
        }

      private:
        Size M_;
    };

    //! K-Neighbor Topology
    /*  The global best as seen by each particle is the best from amongst
    the previous K and next K neighbors. For particle I, the best is
    then taken from amongst the [I - K, I + K] particles.
    */
    class KNeighbors : public ParticleSwarmOptimization::Topology {
      public:
        KNeighbors(Size K = 1) :K_(K) {
            QL_REQUIRE(K > 0, "Neighbors need to be larger than 0");
        }
        inline void setSize(Size M) {
            M_ = M;
            if (M_ < 2 * K_ + 1)
                K_ = (M_ - 1) / 2;
        }
        void findSocialBest();

      private:
        Size K_, M_;
    };

    //! Clubs Topology
    /*  H.M. Emara,  Adaptive Clubs-based Particle Swarm Optimization
    Each particle is originally assigned to a default number of clubs
    from among the total set. The best as seen by each particle is the
    best from amongst the clubs to which the particle belongs.
    Underperforming particles join more clubs randomly (up to a maximum
    number) to widen the particles that influence them, while
    overperforming particles leave clubs randomly (down to a minimum
    number) to avoid early convergence to local minima.
    */
    class ClubsTopology : public ParticleSwarmOptimization::Topology {
      public:
        ClubsTopology(Size defaultClubs, Size totalClubs,
            Size maxClubs, Size minClubs,
            Size resetIteration, unsigned long seed = 0);
        void setSize(Size M);
        void findSocialBest();

      private:
        Size totalClubs_, maxClubs_, minClubs_, defaultClubs_;
        Size iteration_, resetIteration_;
        Size M_;
        std::vector<std::vector<bool> > clubs4particles_;
        std::vector<std::vector<bool> > particles4clubs_;
        std::vector<Size> bestByClub_;
        std::vector<Size> worstByClub_;
        base_generator_type generator_;
        uniform_integer distribution_;

        void leaveRandomClub(Size particle, Size currentClubs);
        void joinRandomClub(Size particle, Size currentClubs);
    };

}

#endif

#endif