/usr/include/ql/experimental/math/latentmodel.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
Copyright (C) 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_latent_model_hpp
#define quantlib_latent_model_hpp
#include <ql/experimental/math/multidimquadrature.hpp>
#include <ql/experimental/math/multidimintegrator.hpp>
#include <ql/math/integrals/trapezoidintegral.hpp>
#include <ql/math/randomnumbers/randomsequencegenerator.hpp>
// for template spezs
#include <ql/experimental/math/gaussiancopulapolicy.hpp>
#include <ql/experimental/math/tcopulapolicy.hpp>
#include <ql/math/randomnumbers/boxmullergaussianrng.hpp>
#include <ql/experimental/math/polarstudenttrng.hpp>
#include <ql/handle.hpp>
#include <ql/quote.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/construct.hpp>
#include <boost/make_shared.hpp>
#include <vector>
/*! \file latentmodel.hpp
\brief Generic multifactor latent variable model.
*/
namespace QuantLib {
namespace detail {
// havent figured out how to do this in-place
struct multiplyV {
typedef Disposable<std::vector<Real> > result_type;
Disposable<std::vector<Real> >
operator()(Real d, Disposable<std::vector<Real> > v)
{
std::transform(v.begin(), v.end(), v.begin(),
boost::lambda::_1 * d);
return v;
}
};
}
//! \name Latent model direct integration facility.
//@{
/* Things trying to achieve here:
1.- Unify the two branches of integrators in the library, they do not
hang from a common base class and here a common ptr for the
factory is needed.
2.- Have a common signature for the integration call.
3.- Factory construction so integrable latent models can choose the
integration algorithm separately.
*/
class LMIntegration {
public:
// Interface with actual integrators:
// integral of a scalar function
virtual Real integrate(const boost::function<Real (
const std::vector<Real>& arg)>& f) const = 0;
// integral of a vector function
/* I had to use a different name, since the compiler does not
recognise the overload; MSVC sees the argument as
boost::function<Signature> in both cases....
I could do the as with the quadratures and have this as a template
function and spez for the vector case but I prefer to understand
why the overload fails....
FIX ME
*/
virtual Disposable<std::vector<Real> > integrateV(
const boost::function<Disposable<std::vector<Real> > (
const std::vector<Real>& arg)>& f) const {
QL_FAIL("No vector integration provided");
}
virtual ~LMIntegration() {}
};
//CRTP-ish for joining the integrations, class above to have the factory
template <class I_T>
class IntegrationBase :
public I_T, public LMIntegration {// diamond on 'integrate'
// this class template always to be fully specialized:
private:
IntegrationBase() {}
virtual ~IntegrationBase() {}
};
//@}
// gcc reports value collision with heston engine (?!) thats why the name
namespace LatentModelIntegrationType {
typedef
enum LatentModelIntegrationType {
GaussianQuadrature,
Trapezoid
// etc....
} LatentModelIntegrationType;
}
/* class template specializations. I havent use CRTP type cast directly
because the signature of the integrators is different, grid integration
needs the domain. */
template<> class IntegrationBase<GaussianQuadMultidimIntegrator> :
public GaussianQuadMultidimIntegrator, public LMIntegration {
public:
IntegrationBase(Size dimension, Size order)
: GaussianQuadMultidimIntegrator(dimension, order) {}
Real integrate(const boost::function<Real (
const std::vector<Real>& arg)>& f) const {
return GaussianQuadMultidimIntegrator::integrate<Real>(f);
}
Disposable<std::vector<Real> > integrateV(
const boost::function<Disposable<std::vector<Real> > (
const std::vector<Real>& arg)>& f) const {
return GaussianQuadMultidimIntegrator::
integrate<Disposable<std::vector<Real> > >(f);
}
virtual ~IntegrationBase() {}
};
template<> class IntegrationBase<MultidimIntegral> :
public MultidimIntegral, public LMIntegration {
public:
IntegrationBase(
const std::vector<boost::shared_ptr<Integrator> >& integrators,
Real a, Real b)
: MultidimIntegral(integrators),
a_(integrators.size(),a), b_(integrators.size(),b) {}
Real integrate(const boost::function<Real (
const std::vector<Real>& arg)>& f) const {
return MultidimIntegral::operator ()(f, a_, b_);
}
// disposable vector version here....
virtual ~IntegrationBase() {}
const std::vector<Real> a_, b_;
};
// Intended to replace OneFactorCopula
/*!
\brief Generic multifactor latent variable model.\par
In this model set up one considers latent (random) variables
\f$ Y_i \f$ described by:
\f[
\begin{array}{ccccc}
Y_1 & = & \sum_k M_k a_{1,k} & + \sqrt{1-\sum_k a_{1,k}^2} Z_1 &
\sim \Phi_{Y_1}\nonumber \\
... & = & ... & ... & \nonumber \\
Y_i & = & \sum_k M_k a_{i,k} & + \sqrt{1-\sum_k a_{i,k}^2} Z_i &
\sim \Phi_{Y_i}\nonumber \\
... & = & ... & ... & \nonumber \\
Y_N & = & \sum_k M_k a_{N,k} & + \sqrt{1-\sum_k a_{N,k}^2} Z_N &
\sim \Phi_{Y_N}
\end{array}
\f]
where the systemic \f$ M_k \f$ and idiosyncratic \f$ Z_i \f$ (this last
one known as error term in some contexts) random variables have
independent zero-mean unit-variance distributions. A restriction of the
model implemented here is that the N idiosyncratic variables all follow
the same probability law \f$ \Phi_Z(z)\f$ (but they are still
independent random variables) Also the model is normalized
so that: \f$-1\leq a_{i,k} \leq 1\f$ (technically the \f$Y_i\f$ are
convex linear combinations). The correlation between \f$Y_i\f$ and
\f$Y_j\f$ is then \f$\sum_k a_{i,k} a_{j,k}\f$.
\f$\Phi_{Y_i}\f$ denotes the cumulative distribution function of
\f$Y_i\f$ which in general differs for each latent variable.\par
In its single factor set up this model is usually employed in derivative
pricing and it is best to use it through integration of the desired
statistical properties of the model; in its multifactorial version (with
typically around a dozen factors) it is used in the context of portfolio
risk metrics; because of the number of variables it is best to opt for a
simulation to compute model properties/magnitudes.
For this reason this class template provides a random factor sample
interface and an integration interface that will be instantiated by
derived concrete models as needed. The class is neutral on the
integration and random generation algorithms\par
The latent variables are typically treated as unobservable magnitudes
and they serve to model one or several magnitudes related to them
through some function
\f[
\begin{array}{ccc}
F_i(Y_i) & = &
F_i(\sum_k M_k a_{i,k} + \sqrt{1-\sum_k a_{i,k}^2} Z_i )\nonumber \\
& = & F_i(M_1,..., M_k, ..., M_K, Z_i)
\end{array}
\f]
The transfer function can have a more generic form:
\f$F_i(Y_1,....,Y_N)\f$ but here the model is restricted to a one to
one relation between the latent variables and the modelled ones. Also
it is assumed that \f$F_i(y_i; \tau)\f$ is monotonic in \f$y_i\f$; it
can then be inverted and the relation of the cumulative probability of
\f$F_i\f$ and \f$Y_i\f$ is simple:
\f[
\int_{\infty}^b \phi_{F_i} df =
\int_{\infty}^{F_i^{-1}(b)} \phi_{Y_i} dy
\f]
If \f$t\f$ is some value of the functional or modelled variable,
\f$y\f$ is mapped to \f$t\f$ such that percentiles match, i.e.
\f$F_Y(y)=Q_i(t)\f$ or \f$y=F_Y^{-1}(Q_i(t))\f$.
The class provides an integration facility of arbitrary functions
dependent on the model states. It also provides random number generation
interfaces for usage of the model in monte carlo simulations.\par
Now let \f$\Phi_Z(z)\f$ be the cumulated distribution function of (all
equal as mentioned) \f$Z_i\f$. For a given realization of \f$M_k\f$,
this determines the distribution of \f$y\f$:
\f[
Prob \,(Y_i < y|M_k) = \Phi_Z \left( \frac{y-\sum_k a_{i,k}\,M_k}
{\sqrt{1-\sum_k a_{i,k}^2}}\right)
\qquad
\mbox{or}
\qquad
Prob \,(t_i < t|M) = \Phi_Z \left( \frac
{F_{Y_{i}}^{-1}(Q_i(t))-\sum_k a_{i,k}\,M_k}
{\sqrt{1-\sum_k a_{i,k}^2}}
\right)
\f]
The distribution functions of \f$ M_k, Z_i \f$ are specified in
specific copula template classes. The distribution function
of \f$ Y_i \f$ is then given by the convolution
\f[
F_{Y_{i}}(y) = Prob\,(Y_i<y) =
\int_{-\infty}^\infty\,\cdots\,\int_{-\infty}^{\infty}\:
D_Z(z)\,\prod_k D_{M_{k}}(m_k) \quad
\Theta \left(y - \sum_k a_{i,k}m_k -
\sqrt{1-\sum_k a_{i,k}^2}\,z\right)\,d\bar{m}\,dz,
\qquad
\Theta (x) = \left\{
\begin{array}{ll}
1 & x \geq 0 \\
0 & x < 0
\end{array}\right.
\f]
where \f$ D_Z(z) \f$ and \f$ D_M(m) \f$ are the probability
densities of \f$ Z\f$ and \f$ M, \f$ respectively.\par
This convolution can also be written
\f[
F_{Y_{i}}(y) = Prob \,(Y_i < y) =
\int_{-\infty}^\infty\,\cdots\,\int_{-\infty}^{\infty}
D_{M_{k}}(m_k)\,dm_k\:
\int_{-\infty}^{g(y,\vec{a},\vec{m})} D_Z(z)\,dz, \qquad
g(y,\vec{a},\vec{m}) = \frac{y - \sum_k a_{i,k}m_k}
{\sqrt{1-\sum_k a_{i,k}^2}}, \qquad \sum_k a_{i,k}^2 < 1
\f]
In general, \f$ F_{Y_{i}}(y) \f$ needs to be computed numerically.\par
The policy class template separates the copula function (the
distributions involved) and the functionality (i.e. what the latent
model represents: a default probability, a recovery...). Since the
copula methods for the
probabilities are to be called repeatedly from an integration or a MC
simulation, virtual tables are avoided and template parameter mechnics
is preferred.\par
There is nothing at this level enforncing the requirement
on the factor distributions to be of zero mean and unit variance. Thats
the user responsibility and the model fails to behave correctly if it
is not the case.\par
Derived classes should implement a modelled magnitude (default time,
etc) and will provide probability distributions and conditional values.
They could also provide functionality for the parameter inversion
problem, the (e.g.) time at which the modeled variable first takes a
given value. This problem has solution/sense depending on the transfer
function \f$F_i(Y_i)\f$ characteristics.
To make direct integration and simulation time efficient virtual
functions have been avoided in accessing methods in the copula policy
and in the sampling of the random factors
*/
template <class copulaPolicyImpl>
class LatentModel
: public virtual Observer , public virtual Observable
{//observer if factors as quotes
public:
void update();
//! \name Copula interface.
//@{
typedef copulaPolicyImpl copulaType;
/*! Cumulative probability of the \f$ Y_i \f$ modelled latent random
variable to take a given value.
*/
Probability cumulativeY(Real val, Size iVariable) const {
return copula_.cumulativeY(val, iVariable);
}
//! Cumulative distribution of Z, the idiosyncratic/error factors.
Probability cumulativeZ(Real z) const {
return copula_.cumulativeZ(z);
}
//! Density function of M, the market/systemic factors.
Probability density(const std::vector<Real>& m) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(m.size() == nFactors_,
"Factor size must match that of model.");
#endif
return copula_.density(m);
}
//! Inverse cumulative distribution of the systemic factor iFactor.
Real inverseCumulativeDensity(Probability p, Size iFactor) const {
return copula_.inverseCumulativeDensity(p, iFactor);
}
/*! Inverse cumulative value of the i-th random latent variable with a
given probability. */
Real inverseCumulativeY(Probability p, Size iVariable) const {
return copula_.inverseCumulativeY(p, iVariable);
}
/*! Inverse cumulative value of the idiosyncratic variable with a given
probability. */
Real inverseCumulativeZ(Probability p) const {
return copula_.inverseCumulativeZ(p);
}
/*! All factor cumulative inversion. Used in integrations and sampling.
Inverts all the cumulative random factors probabilities in the
model. These are all the systemic factors plus all the idiosyncratic
ones, so the size of the inversion is the number of systemic factors
plus the number of latent modelled variables*/
Disposable<std::vector<Real> >
allFactorCumulInverter(const std::vector<Real>& probs) const {
return copula_.allFactorCumulInverter(probs);
}
//@}
/*!The value of the latent variable Y_i conditional to (given) a set of
values of the factors.
@param allFactors Contains values for all the independent factors in
the model. The systemic and idiosyncratic in that order. A full sample
is required, i.e. all the idiosyncratic values are expected to be
present even if only the relevant one is used.
*/
Real latentVarValue(const std::vector<Real>& allFactors,
Size iVar) const
{
return std::inner_product(factorWeights_[iVar].begin(),
// systemic term:
factorWeights_[iVar].end(), allFactors.begin(),
// idiosyncratic term:
allFactors[numFactors()+iVar] * idiosyncFctrs_[iVar]);
}
// \to do write variants of the above, although is the most common case
const copulaType& copula() const {
return copula_;
}
public:
// protected:
//! \name Latent model random factor number generator facility.
//@{
/*! Allows generation or random samples of the latent variable.
Generates samples of all the factors in the latent model according
to the given copula as random sequence. The default implementation
given uses the inversion in the copula policy (which must be
present).
USNG is expected to be a uniform sequence generator in the default
implementation.
*/
/*
Several (very different) usages make the spez non trivial
The final goal is to obtain a sequence generator of the factor
samples, several routes are possible depending on the algorithms:
1.- URNG -> Sequence Gen -> CopulaInversion
e.g.: CopulaInversion(RandomSequenceGenerator<MersenneTwisterRNG>)
2.- PseudoRSG ------------> CopulaInversion
e.g.: CopulaInversion(SobolRSG)
3.- URNG -> SpecificMapping -> Sequence Gen (bypasses the copula
for performance)
e.g.: RandomSequenceGenerator<BoxMullerGaussianRng<
MersenneTwisterRNG> >
Notice that the order the three algorithms involved (uniform gen,
sequence construction, distribution mapping) is not always the same.
(in fact there could be some other ways to generate but these are
the ones in the library now.)
Difficulties arise when wanting to use situation 3.- whith a generic
RNG, leaving it unspecified
Derived classes might specialize (on the copula
type) to another type of generator if a more efficient algorithm
that the distribution inversion is available; rewritig then the
nextSequence method for a particular copula implementation.
Some combinations of generators might make no sense, while it
could be possible to block template classes corresponding to those
cases its not done (yet?) (e.g. a BoxMuller under a TCopula.)
Dimensionality coherence (between the generator and the copula)
should have been checked by the client code.
In multithread usage the sequence generator is expect to be already
in position.
To sample the latent variable itself users should call
LatentModel::latentVarValue with these samples.
*/
// Cant use InverseCumulativeRsg since the inverse there has to return a
// real number and here a vector is needed, the function inverted here
// is multivalued.
template <class USNG,
// dummy template parameter to allow for 'full' specialization of
// inner class without specialization of the outer.
bool = true>
class FactorSampler {
public:
typedef Sample<std::vector<Real> > sample_type;
explicit FactorSampler(const copulaType& copula,
BigNatural seed = 0)
: sequenceGen_(copula.numFactors(), seed), // base case construction
x_(std::vector<Real>(copula.numFactors()), 1.0),
copula_(copula) { }
/*! Returns a sample of the factor set \f$ M_k\,Z_i\f$.
This method has the vocation of being specialized at particular
types of the copula with a more efficient inversion to generate the
random variables modelled (e.g. Box-Muller for a gaussian).
Here a default implementation is provided based directly on the
inversion of the cumulative distribution from the copula.
Care has to be taken in potential specializations that the generator
algorithm is compatible with an eventual concurrence of the
simulations.
*/
const sample_type& nextSequence() const {
typename USNG::sample_type sample =
sequenceGen_.nextSequence();
//Not possible to overload operator member access in Disposable
//return copula_.allFactorCumulInverter(sample.value).value;
x_.value = copula_.allFactorCumulInverter(sample.value);
return x_;
}
private:
USNG sequenceGen_;// copy, we might be mutithreaded
mutable sample_type x_;
// no copies
const copulaType& copula_;
};
//@}
protected:
/* \todo Move integrator traits like number of quadrature points,
integration domain dimensions, etc to the copula through a static
member function. Since they depend on the nature of the probability
density distribution thats where they belong.
This is why theres one factory per copula policy template parameter
(even if this is not used...yet)
*/
class IntegrationFactory {
public:
static boost::shared_ptr<LMIntegration> createLMIntegration(
Size dimension,
LatentModelIntegrationType::LatentModelIntegrationType type =
LatentModelIntegrationType::GaussianQuadrature)
{
switch(type) {
case LatentModelIntegrationType::GaussianQuadrature:
return
boost::make_shared<
IntegrationBase<GaussianQuadMultidimIntegrator> >(
dimension, 25);
break;
case LatentModelIntegrationType::Trapezoid:
{
std::vector<boost::shared_ptr<Integrator> > integrals;
for(Size i=0; i<dimension; i++)
integrals.push_back(
boost::make_shared<TrapezoidIntegral<Default> >(
1.e-4, 20));
/* This integration domain is tailored for the T
distribution; it is too wide for normals or Ts of high
order.
\todo This needs to be solved by having the copula to
provide the integration traits for any integration
algorithm since it is the copula that knows the relevant
domain for its density distributions. Also to be able to
block integrations which will fail; like a quadrature
here in some cases.
*/
return
boost::make_shared<IntegrationBase<MultidimIntegral> >
(integrals, -35., 35.);
break;
}
default:
QL_FAIL("Unknown latent model integration type.");
}
}
private:
IntegrationFactory() {}
};
//@}
public:
// model size, number of latent variables modelled
Size size() const {return nVariables_;}
//! Number of systemic factors.
Size numFactors() const {return nFactors_;}
//! Number of total free random factors; systemic and idiosyncratic.
Size numTotalFactors() const { return nVariables_ + nFactors_; }
/*! Constructs a LM with an arbitrary number of latent variables
and factors given by the dimensions of the passed matrix.
@param factorsWeights Ordering is factorWeights_[iVar][iFactor]
@param ini Initialization variables. Trait type from the copula
policy to allow for static policies (this solution needs to be
revised, possibly drop the static policy and create a policy
member in LatentModel)
*/
explicit LatentModel(
const std::vector<std::vector<Real> >& factorsWeights,
const typename copulaType::initTraits& ini =
copulaType::initTraits());
/*! Constructs a LM with an arbitrary number of latent variables
depending only on one random factor but contributing to each latent
variable through different weights.
@param factorsWeight Ordering is factorWeights_[iVariable]
@param ini Initialization variables. Trait type from the copula
policy to allow for static policies (this solution needs to be
revised, possibly drop the static policy and create a policy
member in LatentModel)
*/
explicit LatentModel(const std::vector<Real>& factorsWeight,
const typename copulaType::initTraits& ini =
copulaType::initTraits());
/*! Constructs a LM with an arbitrary number of latent variables
depending only on one random factor with the same weight for all
latent variables.
@param correlSqr The weight, same for all.
@param ini Initialization variables. Trait type from the copula
policy to allow for static policies (this solution needs to be
revised, possibly drop the static policy and create a policy
member in LatentModel)
*/
explicit LatentModel(const Real correlSqr, Size nVariables,
const typename copulaType::initTraits& ini =
copulaType::initTraits());
/*! Constructs a LM with an arbitrary number of latent variables
depending only on one random factor with the same weight for all
latent variables. The weight is observed and this constructor is
intended to be used when the model relates to a market value.
@param singleFactorCorrel The weight/mkt-factor, same for all.
@param ini Initialization variables. Trait type from the copula
policy to allow for static policies (this solution needs to be
revised, possibly drop the static policy and create a policy
member in LatentModel)
*/
explicit LatentModel(const Handle<Quote>& singleFactorCorrel,
Size nVariables,
const typename copulaType::initTraits& ini =
copulaType::initTraits());
//! Provides values of the factors \f$ a_{i,k} \f$
const std::vector<std::vector<Real> >& factorWeights() const {
return factorWeights_;
}
//! Provides values of the normalized idiosyncratic factors \f$ Z_i \f$
const std::vector<Real>& idiosyncFctrs() const {return idiosyncFctrs_;}
//! Latent variable correlations:
Real latentVariableCorrel(Size iVar1, Size iVar2) const {
// true for any normalized combination
Real init = (iVar1 == iVar2 ?
idiosyncFctrs_[iVar1] * idiosyncFctrs_[iVar1] : 0.);
return std::inner_product(factorWeights_[iVar1].begin(),
factorWeights_[iVar1].end(), factorWeights_[iVar2].begin(),
init);
}
//! \name Integration facility interface
//@{
/*! Integrates an arbitrary scalar function over the density domain(i.e.
computes its expected value).
*/
Real integratedExpectedValue(
const boost::function<Real(const std::vector<Real>& v1)>& f) const {
// function composition: composes the integrand with the density
// through a product.
return
integration()->integrate(
boost::bind(std::multiplies<Real>(),
boost::bind(&copulaPolicyImpl::density, copula_, _1),
boost::bind(boost::cref(f), _1)));
}
/*! Integrates an arbitrary vector function over the density domain(i.e.
computes its expected value).
*/
Disposable<std::vector<Real> > integratedExpectedValue(
// const boost::function<std::vector<Real>(
const boost::function<Disposable<std::vector<Real> >(
const std::vector<Real>& v1)>& f ) const {
return
integration()->integrateV(//see note in LMIntegrators base class
boost::bind<Disposable<std::vector<Real> > >(
detail::multiplyV(),
boost::bind(&copulaPolicyImpl::density, copula_, _1),
boost::bind(boost::cref(f), _1)));
}
protected:
// Integrable models must provide their integrator.
// Arguable, not having the integration in the LM class saves that
// memory but have an entry in the VT...
virtual const boost::shared_ptr<LMIntegration>& integration() const {
QL_FAIL("Integration non implemented in Latent model.");
}
//@}
protected:
// Ordering is: factorWeights_[iVariable][iFactor]
mutable std::vector<std::vector<Real> > factorWeights_;
/* This is a duplicated value from the data above chosen for memory
reasons.
I have opted for this one value redundant memory rather than have the
memory load of the observable in all factors. Typically Latent models
are used in two very different ways: with many factors and not linked
to a market observable (typical matrix size above is of tens of
thousands entries) or with just one observable value and the matrix is
just a scalar. Otherwise, to remove the redundancy, the matrix
factorWeights_ should be one of Quotes Handles.
Yet it is not entirely true that quotes might be used only in pricing,
think sensitivity analysis....
\todo Reconsider this, see how expensive truly is.
*/
mutable Handle<Quote> cachedMktFactor_;
// updated only by correlation observability and constructors.
// \sqrt{1-\sum_k \beta_{i,k}^2} the addition being along the factors.
// It has therefore the size of the basket. Cached for perfomance
mutable std::vector<Real> idiosyncFctrs_;
//! Number of systemic factors.
mutable Size nFactors_;//matches idiosyncFctrs_[0].size();i=0 or any
//! Number of latent model variables, idiosyncratic terms or model dim
mutable Size nVariables_;// matches idiosyncFctrs_.size()
mutable copulaType copula_;
};
// Defines ----------------------------------------------------------------
template <class Impl>
LatentModel<Impl>::LatentModel(
const std::vector<std::vector<Real> >& factorWeights,
const typename Impl::initTraits& ini)
: factorWeights_(factorWeights),
nFactors_(factorWeights[0].size()),
nVariables_(factorWeights.size()), copula_(factorWeights, ini)
{
for(Size i=0; i<factorWeights.size(); i++) {
idiosyncFctrs_.push_back(std::sqrt(1.-
std::inner_product(factorWeights[i].begin(),
factorWeights[i].end(),
factorWeights[i].begin(), 0.)));
// while at it, check sizes are coherent:
QL_REQUIRE(factorWeights[i].size() == nFactors_,
"Name " << i << " provides a different number of factors");
}
}
template <class Impl>
LatentModel<Impl>::LatentModel(
const std::vector<Real>& factorWeights,
const typename Impl::initTraits& ini)
: nFactors_(1),
nVariables_(factorWeights.size())
{
for(Size iName=0; iName < factorWeights.size(); iName++)
factorWeights_.push_back(std::vector<Real>(1,
factorWeights[iName]));
for(Size iName=0; iName < factorWeights.size(); iName++)
idiosyncFctrs_.push_back(std::sqrt(1. -
factorWeights[iName]*factorWeights[iName]));
//convert row to column vector....
copula_ = copulaType(factorWeights_, ini);
}
template <class Impl>
LatentModel<Impl>::LatentModel(
const Real correlSqr,
Size nVariables,
const typename Impl::initTraits& ini)
: factorWeights_(nVariables, std::vector<Real>(1, correlSqr)),
idiosyncFctrs_(nVariables,
std::sqrt(1.-correlSqr*correlSqr)),
nFactors_(1),
nVariables_(nVariables),
copula_(factorWeights_, ini)
{ }
template <class Impl>
LatentModel<Impl>::LatentModel(
const Handle<Quote>& singleFactorCorrel,
Size nVariables,
const typename Impl::initTraits& ini)
: factorWeights_(nVariables, std::vector<Real>(1,
std::sqrt(singleFactorCorrel->value()))),
cachedMktFactor_(singleFactorCorrel),
idiosyncFctrs_(nVariables,
std::sqrt(1.-singleFactorCorrel->value())),
nFactors_(1),
nVariables_(nVariables),
copula_(factorWeights_, ini)
{
registerWith(cachedMktFactor_);
}
template <class Impl>
void LatentModel<Impl>::update() {
/* only registration with the single market correl quote. If we get
register with something else remember that the quote stores correlation
and the model need factor values; which for one factor models are the
square root of the correlation.
*/
factorWeights_ = std::vector<std::vector<Real> >(nVariables_,
std::vector<Real>(1, std::sqrt(cachedMktFactor_->value())));
idiosyncFctrs_ = std::vector<Real>(nVariables_,
std::sqrt(1.-cachedMktFactor_->value()));
copula_ = copulaType(factorWeights_, copula_.getInitTraits());
notifyObservers();
}
//----Template partial specializations of the random FactorSampler--------
/*
Notice that while the default template needs a sequence generator the
specializations need a number generator. This is forced at the time the
concrete policy class is used in the template parameter, if it has been
specialized it needs the sample type typedef to match at compilation.
Notice here the outer class template is specialized only, leaving the inner
generator still a class template. Apparently old versions of gcc (3.x) bug
on this one not recognizing the specialization.
*/
/*! \brief Specialization for direct Gaussian Box-Muller generation.\par
The implementation of Box-Muller in the library is the rejection variant so
do not use it within a multithreaded simulation.
*/
template<class TC> template<class URNG, bool dummy>
class LatentModel<TC>
::FactorSampler <RandomSequenceGenerator<BoxMullerGaussianRng<URNG> > ,
dummy> {
public:
//Size below must be == to the numb of factors idiosy + systemi
typedef Sample<std::vector<Real> > sample_type;
explicit FactorSampler(const GaussianCopulaPolicy& copula,
BigNatural seed = 0)
: boxMullRng_(copula.numFactors(),
BoxMullerGaussianRng<URNG>(URNG(seed))){ }
const sample_type& nextSequence() const {
return boxMullRng_.nextSequence();
}
private:
RandomSequenceGenerator<BoxMullerGaussianRng<URNG> > boxMullRng_;
};
/*! \brief Specialization for direct T samples generation.\par
The PolarT is a rejection algorithm so do not use it within a
multithreaded simulation.
The RandomSequenceGenerator class does not admit heterogeneous
distribution samples so theres a trick here since the template parameter is
not what it is used internally.
*/
template<class TC> template<class URNG, bool dummy>//uniform number expected
class LatentModel<TC>
::FactorSampler<RandomSequenceGenerator<PolarStudentTRng<URNG> > ,
dummy> {
public:
typedef Sample<std::vector<Real> > sample_type;
explicit FactorSampler(const TCopulaPolicy& copula, BigNatural seed = 0)
: sequence_(std::vector<Real> (copula.numFactors()), 1.0),
urng_(seed) {
// 1 == urng.dimension() is enforced by the sample type
const std::vector<Real>& varF = copula.varianceFactors();
for(Size i=0; i<varF.size(); i++)// ...use back inserter lambda
trng_.push_back(
PolarStudentTRng<URNG>(2./(1.-varF[i]*varF[i]), urng_));
}
const sample_type& nextSequence() const {
Size i=0;
for(; i<trng_.size(); i++)//systemic samples plus one idiosyncratic
sequence_.value[i] = trng_[i].next().value;
for(; i<sequence_.value.size(); i++)//rest of idiosyncratic samples
sequence_.value[i] = trng_.back().next().value;
return sequence_;
}
private:
mutable sample_type sequence_;
URNG urng_;
mutable std::vector<PolarStudentTRng<URNG> > trng_;
};
}
#endif
|