This file is indexed.

/usr/include/ql/experimental/exoticoptions/mchimalayaengine.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file mchimalayaengine.hpp
    \brief Monte Carlo engine for Himalaya options
*/

#ifndef quantlib_mc_himalaya_engine_hpp
#define quantlib_mc_himalaya_engine_hpp

#include <ql/experimental/exoticoptions/himalayaoption.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/exercise.hpp>

namespace QuantLib {

    template <class RNG = PseudoRandom, class S = Statistics>
    class MCHimalayaEngine : public HimalayaOption::engine,
                             public McSimulation<MultiVariate,RNG,S> {
      public:
        typedef typename McSimulation<MultiVariate,RNG,S>::path_generator_type
            path_generator_type;
        typedef typename McSimulation<MultiVariate,RNG,S>::path_pricer_type
            path_pricer_type;
        typedef typename McSimulation<MultiVariate,RNG,S>::stats_type
            stats_type;
        MCHimalayaEngine(const boost::shared_ptr<StochasticProcessArray>&,
                         bool brownianBridge,
                         bool antitheticVariate,
                         Size requiredSamples,
                         Real requiredTolerance,
                         Size maxSamples,
                         BigNatural seed);

        void calculate() const {
            McSimulation<MultiVariate,RNG,S>::calculate(requiredTolerance_,
                                                        requiredSamples_,
                                                        maxSamples_);
            results_.value = this->mcModel_->sampleAccumulator().mean();

            if (RNG::allowsErrorEstimate)
            results_.errorEstimate =
                this->mcModel_->sampleAccumulator().errorEstimate();
        }
      private:
        // McSimulation implementation
        TimeGrid timeGrid() const;
        boost::shared_ptr<path_generator_type> pathGenerator() const {

            Size numAssets = processes_->size();

            TimeGrid grid = timeGrid();
            typename RNG::rsg_type gen =
                RNG::make_sequence_generator(numAssets*(grid.size()-1),seed_);

            return boost::shared_ptr<path_generator_type>(
                         new path_generator_type(processes_,
                                                 grid, gen, brownianBridge_));
        }
        boost::shared_ptr<path_pricer_type> pathPricer() const;

        // data members
        boost::shared_ptr<StochasticProcessArray> processes_;
        Size requiredSamples_;
        Size maxSamples_;
        Real requiredTolerance_;
        bool brownianBridge_;
        BigNatural seed_;
    };


    //! Monte Carlo Himalaya-option engine factory
    template <class RNG = PseudoRandom, class S = Statistics>
    class MakeMCHimalayaEngine {
      public:
        MakeMCHimalayaEngine(
                    const boost::shared_ptr<StochasticProcessArray>&);
        // named parameters
        MakeMCHimalayaEngine& withBrownianBridge(bool b = true);
        MakeMCHimalayaEngine& withAntitheticVariate(bool b = true);
        MakeMCHimalayaEngine& withSamples(Size samples);
        MakeMCHimalayaEngine& withAbsoluteTolerance(Real tolerance);
        MakeMCHimalayaEngine& withMaxSamples(Size samples);
        MakeMCHimalayaEngine& withSeed(BigNatural seed);
        // conversion to pricing engine
        operator boost::shared_ptr<PricingEngine>() const;
      private:
        boost::shared_ptr<StochasticProcessArray> process_;
        bool brownianBridge_, antithetic_;
        Size samples_, maxSamples_;
        Real tolerance_;
        BigNatural seed_;
    };


    class HimalayaMultiPathPricer : public PathPricer<MultiPath> {
      public:
        HimalayaMultiPathPricer(const boost::shared_ptr<Payoff>& payoff,
                                DiscountFactor discount);
        Real operator()(const MultiPath& multiPath) const;
      private:
        boost::shared_ptr<Payoff> payoff_;
        DiscountFactor discount_;
    };

    // template definitions

    template<class RNG, class S>
    inline MCHimalayaEngine<RNG,S>::MCHimalayaEngine(
                   const boost::shared_ptr<StochasticProcessArray>& processes,
                   bool brownianBridge,
                   bool antitheticVariate,
                   Size requiredSamples,
                   Real requiredTolerance,
                   Size maxSamples,
                   BigNatural seed)
    : McSimulation<MultiVariate,RNG,S>(antitheticVariate, false),
      processes_(processes), requiredSamples_(requiredSamples),
      maxSamples_(maxSamples), requiredTolerance_(requiredTolerance),
      brownianBridge_(brownianBridge), seed_(seed) {
        registerWith(processes_);
    }

    template <class RNG, class S>
    inline TimeGrid MCHimalayaEngine<RNG,S>::timeGrid() const {

        std::vector<Time> fixingTimes;
        for (Size i=0; i<arguments_.fixingDates.size(); i++) {
            Time t = processes_->time(arguments_.fixingDates[i]);
            QL_REQUIRE(t >= 0.0, "seasoned options are not handled");
            if (i > 0) {
                QL_REQUIRE(t > fixingTimes.back(), "fixing dates not sorted");
            }
            fixingTimes.push_back(t);
        }

        return TimeGrid(fixingTimes.begin(), fixingTimes.end());
    }

    template <class RNG, class S>
    inline
    boost::shared_ptr<typename MCHimalayaEngine<RNG,S>::path_pricer_type>
    MCHimalayaEngine<RNG,S>::pathPricer() const {

        boost::shared_ptr<GeneralizedBlackScholesProcess> process =
            boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
                                                      processes_->process(0));
        QL_REQUIRE(process, "Black-Scholes process required");

        return boost::shared_ptr<
                         typename MCHimalayaEngine<RNG,S>::path_pricer_type>(
            new HimalayaMultiPathPricer(arguments_.payoff,
                                        process->riskFreeRate()->discount(
                                           arguments_.exercise->lastDate())));
    }


    template <class RNG, class S>
    inline MakeMCHimalayaEngine<RNG,S>::MakeMCHimalayaEngine(
                     const boost::shared_ptr<StochasticProcessArray>& process)
    : process_(process), brownianBridge_(false), antithetic_(false),
      samples_(Null<Size>()), maxSamples_(Null<Size>()),
      tolerance_(Null<Real>()), seed_(0) {}

    template <class RNG, class S>
    inline MakeMCHimalayaEngine<RNG,S>&
    MakeMCHimalayaEngine<RNG,S>::withBrownianBridge(bool brownianBridge) {
        brownianBridge_ = brownianBridge;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHimalayaEngine<RNG,S>&
    MakeMCHimalayaEngine<RNG,S>::withAntitheticVariate(bool b) {
        antithetic_ = b;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHimalayaEngine<RNG,S>&
    MakeMCHimalayaEngine<RNG,S>::withSamples(Size samples) {
        QL_REQUIRE(tolerance_ == Null<Real>(),
                   "tolerance already set");
        samples_ = samples;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHimalayaEngine<RNG,S>&
    MakeMCHimalayaEngine<RNG,S>::withAbsoluteTolerance(Real tolerance) {
        QL_REQUIRE(samples_ == Null<Size>(),
                   "number of samples already set");
        QL_REQUIRE(RNG::allowsErrorEstimate,
                   "chosen random generator policy "
                   "does not allow an error estimate");
        tolerance_ = tolerance;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHimalayaEngine<RNG,S>&
    MakeMCHimalayaEngine<RNG,S>::withMaxSamples(Size samples) {
        maxSamples_ = samples;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHimalayaEngine<RNG,S>&
    MakeMCHimalayaEngine<RNG,S>::withSeed(BigNatural seed) {
        seed_ = seed;
        return *this;
    }

    template <class RNG, class S>
    inline
    MakeMCHimalayaEngine<RNG,S>::operator boost::shared_ptr<PricingEngine>()
                                                                      const {
        return boost::shared_ptr<PricingEngine>(new
            MCHimalayaEngine<RNG,S>(process_,
                                    brownianBridge_,
                                    antithetic_,
                                    samples_,
                                    tolerance_,
                                    maxSamples_,
                                    seed_));
    }

}

#endif