This file is indexed.

/usr/include/ql/experimental/credit/syntheticcdo.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Roland Lichters

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file syntheticcdo.hpp
    \brief Synthetic Collateralized Debt Obligation and pricing engines
*/

#ifndef quantlib_synthetic_cdo_hpp
#define quantlib_synthetic_cdo_hpp

#include <ql/instrument.hpp>
#include <ql/default.hpp>
#include <ql/time/schedule.hpp>

#include <ql/experimental/credit/basket.hpp>
#include <ql/cashflows/fixedratecoupon.hpp>

namespace QuantLib {

    class YieldTermStructure;

    //! Synthetic Collateralized Debt Obligation
    /*!
      The instrument prices a mezzanine CDO tranche with loss given default 
      between attachment point \f$ D_1\f$ and detachment point 
      \f$ D_2 > D_1 \f$.

      For purchased protection, the instrument value is given by the difference
      of the protection value \f$ V_1 \f$ and premium value \f$ V_2 \f$,

      \f[ V = V_1 - V_2. \f]

      The protection leg is priced as follows:

      - Build the probability distribution for volume of defaults \f$ L \f$ 
      (before recovery) or Loss Given Default \f$ LGD = (1-r)\,L \f$ at 
      times/dates \f$ t_i, i=1, ..., N\f$ (premium schedule times with
      intermediate steps)

      - Determine the expected value 
      \f$ E_i = E_{t_i}\,\left[Pay(LGD)\right] \f$
      of the protection payoff \f$ Pay(LGD) \f$  at each time \f$ t_i\f$ where
      \f[
      Pay(L) = min (D_1, LGD) - min (D_2, LGD) = \left\{
      \begin{array}{lcl}
      \displaystyle 0 &;& LGD < D_1 \\
      \displaystyle LGD - D_1 &;& D_1 \leq LGD \leq D_2 \\
      \displaystyle D_2 - D_1 &;& LGD > D_2
      \end{array}
      \right.
      \f]

      - The protection value is then calculated as
      \f[ V_1 \:=\: \sum_{i=1}^N (E_i - E_{i-1}) \cdot  d_i \f]
      where \f$ d_i\f$ is the discount factor at time/date \f$ t_i \f$

      The premium is paid on the protected notional amount, initially
      \f$ D_2 - D_1. \f$ This notional amount is reduced by the expected 
      protection
      payments \f$ E_i \f$ at times \f$ t_i, \f$ so that the premium value is
      calculated as

      \f[
      V_2 =m \, \cdot \sum_{i=1}^N \,(D_2 - D_1 - E_i) \cdot \Delta_{i-1,i}\,d_i
      \f]

      where \f$ m \f$ is the premium rate, \f$ \Delta_{i-1, i}\f$ is the day
      count fraction between date/time \f$ t_{i-1}\f$ and \f$ t_i.\f$

      The construction of the portfolio loss distribution \f$ E_i \f$ is
      based on the probability bucketing algorithm described in

      <strong>
      John Hull and Alan White, "Valuation of a CDO and nth to default CDS
      without Monte Carlo simulation", Journal of Derivatives 12, 2, 2004
      </strong>

      The pricing algorithm allows for varying notional amounts and
      default termstructures of the underlyings.

      \ingroup credit

      \todo Investigate and fix cases \f$ E_{i+1} < E_i. \f$
    */
    class SyntheticCDO : public Instrument {
    public:
        class arguments;
        class results;
        class engine;

        // Review: No accrual settlement flag. No separate upfront payment date.
        // Review: Forward start case.
        /**
            @param notional Tranche notional. If the notional exceeds the basket
                inception tranche notional the cdo is leveraged by that factor.

            \todo: allow for extra payment flags, arbitrary upfrt pay date,....
        */
        SyntheticCDO (const boost::shared_ptr<Basket>& basket,
                      Protection::Side side,
                      const Schedule& schedule,
                      Rate upfrontRate,
                      Rate runningRate,
                      const DayCounter& dayCounter,
                      BusinessDayConvention paymentConvention,
                      boost::optional<Real> notional = boost::none);

        const boost::shared_ptr<Basket>& basket() const { return basket_; }

        bool isExpired () const;
        Rate fairPremium() const;
        Rate fairUpfrontPremium() const;
        Rate premiumValue () const;
        Rate protectionValue () const;
        Real premiumLegNPV() const;
        Real protectionLegNPV() const;
        /*!
          Total outstanding tranche notional, not wiped out
        */
        Real remainingNotional() const;
        /*! The number of times the contract contains the portfolio tranched 
                notional.
        */
        Real leverageFactor() const {
            return leverageFactor_;
        }
        //! Last protection date.
        const Date& maturity() const {
            return boost::dynamic_pointer_cast<FixedRateCoupon>(
                normalizedLeg_.back())->accrualEndDate();
        }
        /*! The Gaussian Copula LHP implied correlation that makes the 
            contract zero value. This is for a flat correlation along
            time and portfolio loss level.
        */
        Real implicitCorrelation(const std::vector<Real>& recoveries,
            const Handle<YieldTermStructure>& discountCurve, 
            Real targetNPV = 0.,
            Real accuracy = 1.0e-3) const;

        /*!
          Expected tranche loss for all payment dates
         */
        Disposable<std::vector<Real> > expectedTrancheLoss() const;
        Size error () const;

        void setupArguments(PricingEngine::arguments*) const;
        void fetchResults(const PricingEngine::results*) const;

    private:
        void setupExpired() const;

        boost::shared_ptr<Basket> basket_;
        Protection::Side side_;
        Leg normalizedLeg_;

        Rate upfrontRate_;
        Rate runningRate_;
        const Real leverageFactor_;
        DayCounter dayCounter_;
        BusinessDayConvention paymentConvention_;

        mutable Real premiumValue_;
        mutable Real protectionValue_;
        mutable Real upfrontPremiumValue_;
        mutable Real remainingNotional_;
        mutable Size error_;
        mutable std::vector<Real> expectedTrancheLoss_;
    };

    class SyntheticCDO::arguments : public virtual PricingEngine::arguments {
    public:
        arguments() : side(Protection::Side(-1)),
                      upfrontRate(Null<Real>()),
                      runningRate(Null<Real>()) {}
        void validate() const;

        boost::shared_ptr<Basket> basket;
        Protection::Side side;
        Leg normalizedLeg;

        Rate upfrontRate;
        Rate runningRate;
        Real leverageFactor;
        DayCounter dayCounter;
        BusinessDayConvention paymentConvention;
    };

    class SyntheticCDO::results : public Instrument::results {
    public:
        void reset();
        Real premiumValue;
        Real protectionValue;
        Real upfrontPremiumValue;
        Real remainingNotional;
        Real xMin, xMax;
        Size error;
        /* Expected tranche losses affecting this tranche coupons. Notice this 
        number might be below the actual basket losses, since the cdo protection
        might start after basket inception (forward start CDO)*/
        std::vector<Real> expectedTrancheLoss;
    };


    //! CDO base engine
    class SyntheticCDO::engine : 
        public GenericEngine<SyntheticCDO::arguments, 
                             SyntheticCDO::results> { };

}

#endif