This file is indexed.

/usr/include/ql/experimental/credit/spotlosslatentmodel.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2014 Jose Aparicio

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_spotlosslatentmodel_hpp
#define quantlib_spotlosslatentmodel_hpp

#include <ql/experimental/credit/defaultprobabilitylatentmodel.hpp>

namespace QuantLib {

    /*! \brief Random spot recovery rate latent variable portfolio model.\par
    See: \par
    <b>A Spot Stochastic Recovery Extension of the Gaussian Copula</b> N.Bennani
         and J.Maetz, MPRA July 2009 \par
    <b>Extension of Spot Recovery model for Gaussian Copula</b> H.Li, October
        2009,  MPRA \par
    The model is adpated here for a multifactor set up and a generic copula so 
    it can be used for pricing in single factor mode or for risk metrics in its
    multifactor version.\par
    \todo Rewrite this model: the distribution of the spot recovery given
    default could be given as a functional of rr_i with the market factors and
    the rest of methods depend on this. That would offer a family of models.
    \todo Implement eq. 45 to have the EL(t) and be able to integrate the model
    */
    template <class copulaPolicy>
    class SpotRecoveryLatentModel : public LatentModel<copulaPolicy> {
    public:
        // resolve LM interface:
        using LatentModel<copulaPolicy>::factorWeights;
        using LatentModel<copulaPolicy>::inverseCumulativeY;
        using LatentModel<copulaPolicy>::cumulativeY;
        using LatentModel<copulaPolicy>::latentVarValue;
        using LatentModel<copulaPolicy>::integratedExpectedValue;
    private:
        const std::vector<Real> recoveries_;
        const Real modelA_;
        // products of default and recoveries factors, see refs ('covariances')
        std::vector<Real> crossIdiosyncFctrs_;
        mutable Size numNames_;
        mutable boost::shared_ptr<Basket> basket_;
        boost::shared_ptr<LMIntegration> integration_;
    protected:
        //! access to integration:
        const boost::shared_ptr<LMIntegration>& 
            integration() const { return integration_; }
    private:
        typedef typename copulaPolicy::initTraits initTraits;
    public:
        SpotRecoveryLatentModel(
            const std::vector<std::vector<Real> >& factorWeights,
            const std::vector<Real>& recoveries,
            Real modelA,
            LatentModelIntegrationType::LatentModelIntegrationType integralType,
            const initTraits& ini = initTraits()
            ); 

        void resetBasket(const boost::shared_ptr<Basket> basket) const;
        Probability conditionalDefaultProbability(const Date& date, Size iName,
            const std::vector<Real>& mktFactors) const;
        Probability conditionalDefaultProbability(Probability prob, Size iName,
            const std::vector<Real>& mktFactors) const;
        Probability conditionalDefaultProbabilityInvP(Real invCumYProb, 
            Size iName, 
            const std::vector<Real>& m) const;
        /*! Expected conditional spot recovery rate. Conditional on a set of 
        systemic factors and default returns the integrated attainable recovery 
        values. \par
        Corresponds to a multifactor generalization of the model in eq. 44 
        on p.15 of <b>Extension of Spot Recovery Model for Gaussian Copula</b> 
        Hui Li. 2009  Only remember that \f$\rho_l Z \f$ there is here 
        (multiple betas): 
        \f$ \sum_k \beta_{ik}^l Z_k \f$ and that \f$ \rho_d \rho_l \f$ there is
        here: 
        \f$ \sum_k \beta_{ik}^d \beta_{ik}^l \f$ \par
        (d,l corresponds to first and last set of betas) 
        */
        Real expCondRecovery/*conditionalRecovery*/(const Date& d, Size iName, 
                                 const std::vector<Real>& mktFactors) const;
        Real expCondRecoveryP(Real uncondDefP, Size iName, 
                                 const std::vector<Real>& mktFactors) const;
        Real expCondRecoveryInvPinvRR(Real invUncondDefP, Real invUncondRR,
            Size iName, const std::vector<Real>& mktFactors) const;
        /*! Implements equation 42 on p.14 (second).
            Remember that for this call to make sense the sample used must be 
            one leading to a default. Theres no check on this. This member
            typically to be used within a simulation.
        */
        Real conditionalRecovery(Real latentVarSample, Size iName, 
            const Date& d) const;
        /*! Due to the way the latent model is splitted in two parts, we call 
        the base class for the default sample and the LM owned here for the RR 
        model sample. This sample only makes sense if it led to a default.
        @param allFactors All sampled factors, default and RR valiables.
        @param iName The index of the name for which we want the RR sample

        \todo Write vector version for all names' RRs 
        */
        Real latentRRVarValue(const std::vector<Real>& allFactors, 
            Size iName) const;
        Real conditionalExpLossRR(const Date& d, Size iName, 
            const std::vector<Real>& mktFactors) const;
        Real conditionalExpLossRRInv(Real invP, Real invRR, Size iName, 
            const std::vector<Real>& mktFactors) const;
        /*! Single name expected loss.\par 
        The main reason of this method is for the testing of this model. The 
        model is coherent in that it preserves the single name expected loss
        and thus is coherent with the single name CDS market when used in the
        pricing context. i.e. it should match: \f$pdef_i(d) \times RR_i \f$
        */
        Real expectedLoss(const Date& d, Size iName) const;
    };


    typedef SpotRecoveryLatentModel<GaussianCopulaPolicy> GaussianSpotLossLM;
    typedef SpotRecoveryLatentModel<TCopulaPolicy> TSpotLossLM;


    // ------------------------------------------------------------------------

    template<class CP>
    inline void SpotRecoveryLatentModel<CP>::resetBasket(
        const boost::shared_ptr<Basket> basket) const 
    {
        basket_ = basket;
        // in the future change 'size' to 'liveSize'
        QL_REQUIRE(basket_->size() == numNames_, 
            "Incompatible new basket and model sizes.");
    }

    template<class CP>
    inline Probability 
        SpotRecoveryLatentModel<CP>::conditionalDefaultProbability(
        const Date& date, 
        Size iName, const std::vector<Real>& mktFactors) const 
    {
        const boost::shared_ptr<Pool>& pool = basket_->pool();
        Probability pDefUncond =
            pool->get(pool->names()[iName]).
            defaultProbability(basket_->defaultKeys()[iName])
              ->defaultProbability(date);
        return conditionalDefaultProbability(pDefUncond, iName, mktFactors);
    }

    template<class CP>
    inline Probability 
        SpotRecoveryLatentModel<CP>::conditionalDefaultProbability(
        Probability prob, 
        Size iName, const std::vector<Real>& mktFactors) const 
    {
        // we can be called from the outside (from an integrable loss model)
        //   but we are called often at integration points. This or
        //   consider a list of friends.
    #if defined(QL_EXTRA_SAFETY_CHECKS)
        QL_REQUIRE(basket_, "No portfolio basket set.");
    #endif
        /*Avoid redundant call to minimum value inversion (might be \infty),
        and this independently of the copula function.
        */
        if (prob < 1.e-10) return 0.;// use library macro...
        return conditionalDefaultProbabilityInvP(
            inverseCumulativeY(prob, iName), iName, mktFactors);
    }

    template<class CP>
    inline Probability 
        SpotRecoveryLatentModel<CP>::conditionalDefaultProbabilityInvP(
        Real invCumYProb, 
        Size iName, 
        const std::vector<Real>& m) const 
    {
        Real sumMs = 
            std::inner_product(this->factorWeights_[iName].begin(), 
                               this->factorWeights_[iName].end(), m.begin(), 0.);
        Real res = this->cumulativeZ((invCumYProb - sumMs) / 
                this->idiosyncFctrs_[iName] );
        #if defined(QL_EXTRA_SAFETY_CHECKS)
        QL_REQUIRE (res >= 0. && res <= 1.,
                    "conditional probability " << res << "out of range");
        #endif
    
        return res;
    }

    template<class CP>
    inline Real 
        SpotRecoveryLatentModel<CP>::expCondRecovery(const Date& d, 
        Size iName,
        const std::vector<Real>& mktFactors) const 
    {
    #if defined(QL_EXTRA_SAFETY_CHECKS)
        QL_REQUIRE(mktFactors.size() == this->numFactors(), 
        "Realization of market factors and latent model size do not match");
    #endif
        const boost::shared_ptr<Pool>& pool = basket_->pool();
        Probability pDefUncond =
            pool->get(pool->names()[iName]).
            defaultProbability(basket_->defaultKeys()[iName])
              ->defaultProbability(d);

        return expCondRecoveryP(pDefUncond, iName, mktFactors);
    }

    template<class CP>
    inline Real SpotRecoveryLatentModel<CP>::expCondRecoveryP(
        Real uncondDefP, Size iName, const std::vector<Real>& mktFactors) const 
    {
        return expCondRecoveryInvPinvRR(
            inverseCumulativeY(uncondDefP, iName), 
            inverseCumulativeY(recoveries_[iName], iName + numNames_),
            iName, mktFactors);
    }

    template<class CP>
    Real SpotRecoveryLatentModel<CP>::expCondRecoveryInvPinvRR(
        Real invUncondDefP, 
        Real invUncondRR, 
        Size iName, 
        const std::vector<Real>& mktFactors) const 
    {
        const std::vector<std::vector<Real> >& fctrs_ = factorWeights();
        //Size iRR = iName + basket_->size();// should be live pool
        const Real sumMs =
          std::inner_product(fctrs_[iName].begin(), fctrs_[iName].end(), 
              mktFactors.begin(), 0.);
        const Real sumBetaLoss = 
          std::inner_product(fctrs_[iName + numNames_].begin(),
              fctrs_[iName + numNames_].end(),
              fctrs_[iName + numNames_].begin(), 
              0.);
        return this->cumulativeZ((sumMs + std::sqrt(1.-crossIdiosyncFctrs_[iName])
                 * std::sqrt(1.+modelA_*modelA_) * 
                   invUncondRR
            - std::sqrt(crossIdiosyncFctrs_[iName]) * 
                invUncondDefP
                )
            / std::sqrt(1.- sumBetaLoss + modelA_*modelA_ * 
                (1.-crossIdiosyncFctrs_[iName])) );
    }

    template<class CP>
    Real SpotRecoveryLatentModel<CP>::conditionalRecovery(Real latentVarSample,
        Size iName, const Date& d) const 
    {
        const boost::shared_ptr<Pool>& pool = basket_->pool();

        // retrieve the default probability for this name
        const Handle<DefaultProbabilityTermStructure>& dfts = 
            pool->get(basket_->names()[iName]).defaultProbability(
                basket_->defaultKeys()[iName]);
        const Probability pdef = dfts->defaultProbability(d, true);
        // before asking for -\infty
        if (pdef < 1.e-10) return 0.;

        Size iRecovery = iName + numNames_;// should be live pool
        return cumulativeY(
            (latentVarSample - std::sqrt(crossIdiosyncFctrs_[iName]) 
                * inverseCumulativeY(pdef, iName)) / 
                (modelA_ * std::sqrt(1.-crossIdiosyncFctrs_[iName]))
            // cache the sqrts
            // cache this factor.
            +std::sqrt(1.+ 1./(modelA_*modelA_)) * 
                inverseCumulativeY(recoveries_[iName], iRecovery) 
            , iRecovery);
    }

    template<class CP>
    inline Real SpotRecoveryLatentModel<CP>::latentRRVarValue(
        const std::vector<Real>& allFactors, 
        Size iName) const 
    {
        Size iRecovery = iName + numNames_;// should be live pool
        return latentVarValue(allFactors, iRecovery);
    }

    template<class CP>
    inline Real SpotRecoveryLatentModel<CP>::conditionalExpLossRR(const Date& d,
        Size iName, 
        const std::vector<Real>& mktFactors) const 
    {
        const boost::shared_ptr<Pool>& pool = basket_->pool();
        Probability pDefUncond =
            pool->get(pool->names()[iName]).
            defaultProbability(basket_->defaultKeys()[iName])
              ->defaultProbability(d);

        Real invP = inverseCumulativeY(pDefUncond, iName);
        Real invRR = inverseCumulativeY(recoveries_[iName], iName + numNames_);

        return conditionalExpLossRRInv(invP, invRR, iName, mktFactors);
    }

    template<class CP>
    inline Real SpotRecoveryLatentModel<CP>::conditionalExpLossRRInv(
        Real invP, 
        Real invRR,
        Size iName, 
        const std::vector<Real>& mktFactors) const 
    {
        return conditionalDefaultProbabilityInvP(invP, iName, mktFactors)
            * (1.-this->conditionalRecoveryInvPinvRR(invP, invRR, iName, mktFactors));
    }

    template<class CP>
    inline Real SpotRecoveryLatentModel<CP>::expectedLoss(const Date& d, 
        Size iName) const 
    {
        const boost::shared_ptr<Pool>& pool = basket_->pool();
        Probability pDefUncond =
            pool->get(pool->names()[iName]).
            defaultProbability(basket_->defaultKeys()[iName])
              ->defaultProbability(d);

        Real invP = inverseCumulativeY(pDefUncond, iName);
        Real invRR = inverseCumulativeY(recoveries_[iName], iName + numNames_);

        return integratedExpectedValue(
            boost::function<Real (const std::vector<Real>& v1)>(
               boost::bind(
               &SpotRecoveryLatentModel<CP>::conditionalExpLossRRInv,
               this,
               invP,
               invRR,
               iName,
               _1)
              ));
    }

    template<class CP>
    SpotRecoveryLatentModel<CP>::SpotRecoveryLatentModel(
        const std::vector<std::vector<Real> >& factorWeights,
        const std::vector<Real>& recoveries,
        Real modelA,
        LatentModelIntegrationType::LatentModelIntegrationType integralType,
        const typename CP::initTraits& ini
        ) 
    : LatentModel<CP>(factorWeights, ini),
      recoveries_(recoveries), 
      modelA_(modelA),
      numNames_(factorWeights.size()/2),
      integration_(LatentModel<CP>::IntegrationFactory::
        createLMIntegration(factorWeights[0].size(), integralType))
    {
        QL_REQUIRE(factorWeights.size() % 2 == 0, 
         "Number of RR variables must be equal to number of default variables");
        QL_REQUIRE(recoveries.size() == numNames_ , 
         "Number of recoveries does not match number of defaultable entities.");

        // reminder: first betas are default, last ones are recovery 
        for(Size iName=0; iName<numNames_; iName++) /// USE STL
            /* Corresponds to: (k denotes factor, i denotes modelled 
                variable -default and recoveries))
                \sum_k a^2_{i,k} a^2_{N+i,k}
            */
        {
            Real cumul = 0.;
            for(Size iB=0; iB<factorWeights[iName].size(); iB++)
                // actually this size is unique
                cumul += factorWeights[iName][iB] * 
                    factorWeights[iName][iB] * 
                    factorWeights[iName + numNames_][iB] * 
                    factorWeights[iName + numNames_][iB];
            crossIdiosyncFctrs_.push_back(cumul);
        }

    }


}

#endif