/usr/include/ql/experimental/credit/randomdefaultlatentmodel.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
Copyright (C) 2009, 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_randomdefault_latent_model_hpp
#define quantlib_randomdefault_latent_model_hpp
#include <ql/math/beta.hpp>
#include <ql/math/statistics/histogram.hpp>
#include <ql/math/statistics/riskstatistics.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/randomnumbers/sobolrsg.hpp>
#include <ql/experimental/credit/basket.hpp>
#include <ql/experimental/credit/defaultlossmodel.hpp>
#include <ql/experimental/math/latentmodel.hpp>
#include <ql/experimental/credit/constantlosslatentmodel.hpp>
#include <ql/experimental/math/gaussiancopulapolicy.hpp>
#include <ql/experimental/math/tcopulapolicy.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
/* Intended to replace
ql\experimental\credit\randomdefaultmodel.Xpp
*/
namespace QuantLib {
/*! Simulation event trait class template forward declaration.
Each latent model will be modelling different entities according to the
meaning of the model function which depends on the random \$ Y_i\$
variables. Still the generation of the factors and variables it is common to
any model. Only within a given transformation function the model and event
generated becomes concrete.
However here these simulations are already made specific to a default event.
Yet other variables contingent to default can be modelled (recovery,
market...) So we are placed in a less generic stage where default is
modelled possibly jointly with other unespecified magnitudes.
Another role of this trait class is to compact in memory the simulation
data. The statistic post processing needs to have the results stored in
memory and simulations can not be consumed at generation time, typically
because some statistics are conditional on others (e.g. ESF) or/and
parametric (percentile, etc...)
Simulation events do not derive from each other, and they are specialized
for each type; duck typing applies for variable names (see the statistic
methods)
*/
// replaces class Loss
template <class simEventOwner> struct simEvent;
/*! Base class for latent model monte carlo simulation. Independent of the
copula type and the generator.
Generates the factors and variable samples and determines event threshold
but it is not responsible for actual event specification; thats the derived
classes responsibility according to what they model.
Derived classes need mainly to implement nextSample (Worker::nextSample in
the multithreaded version) to compute the simulation event generated, if
any, from the latent variables sample. They also have the accompanying
event trait to specify.
*/
/* CRTP used for performance to avoid virtual table resolution in the Monte
Carlo. Not only in sample generation but access; quite an amount of time can
go into statistics computation, for a portfolio of tens of thousands
positions that part of the problem will be starting to overtake the
simulation costs.
\todo: someone with sound experience on cache misses look into this, the
statistics will be getting memory in and out of the cpu heavily and it
might be possible to get performance out of that.
\todo: parallelize the statistics computation, things like Var/ESF splits
are very expensive.
\todo: consider another design, taking the statistics outside the models.
*/
template<template <class, class> class derivedRandomLM, class copulaPolicy,
class USNG = SobolRsg>
class RandomLM : public virtual LazyObject,
public virtual DefaultLossModel {
private:
// Takes the parents type, all children have the same type, the
// random generation is performed in this class only.
typedef typename LatentModel<copulaPolicy>::template FactorSampler<USNG>
copulaRNG_type;
protected:
RandomLM(Size numFactors,
Size numLMVars,
const copulaPolicy& copula,
Size nSims,
BigNatural seed)
: seed_(seed), numFactors_(numFactors), numLMVars_(numLMVars),
nSims_(nSims), copula_(copula) {}
void update() {
simsBuffer_.clear();
// tell basket to notify instruments, etc, we are invalid
if(!basket_.empty()) basket_->notifyObservers();
LazyObject::update();
}
void performCalculations() const {
static_cast<const derivedRandomLM<copulaPolicy, USNG>* >(
this)->initDates();//in update?
copulasRng_ = boost::make_shared<copulaRNG_type>(copula_, seed_);
performSimulations();
}
void performSimulations() const {
// Next sequence should determine the event and push it into buffer
for(Size i=nSims_; i; i--) {
const std::vector<Real>& sample =
copulasRng_->nextSequence().value;
static_cast<const derivedRandomLM<copulaPolicy, USNG>* >(
this)->nextSample(sample);
// alternatively make call an explicit local method...
}
}
/* Method to access simulation results and avoiding a copy of
each thread results buffer. PerformCalculations should have been called.
Here in the monothread version this method is redundant/trivial but
serves to detach the statistics access to the way the simulations are
stored.
*/
const std::vector<simEvent<derivedRandomLM<copulaPolicy, USNG> > >&
getSim(const Size iSim) const { return simsBuffer_[iSim]; }
/* Allows statistics to be written generically for fixed and random
recovery rates. */
Real getEventRecovery(
const simEvent<derivedRandomLM<copulaPolicy, USNG> >& evt) const
{
return static_cast<const derivedRandomLM<copulaPolicy, USNG>* >(
this)->getEventRecovery(evt);
}
//! \name Statistics, DefaultLossModel interface.
// These are virtual and allow for children-specific optimization and
// variance reduction. The virtual table is ok, they are not part
// of the simulation.
//@{
/*! Returns the probaility of having a given or larger number of
defaults in the basket portfolio at a given time.
*/
virtual Probability probAtLeastNEvents(Size n, const Date& d) const;
/*! Order of results refers to the simulated (super)pool not the
basket's pool.
Notice that this statistic suffers from heavy dispersion. To see
techniques to improve it (not implemented here) see:
Joshi, M., D. Kainth. 2004. Rapid and accurate development of prices
and Greeks for nth to default credit swaps in the Li model. Quantitative
Finance, Vol. 4. Institute of Physics Publishing, London, UK, 266�275
and:
Chen, Z., Glasserman, P. 'Fast pricing of basket default swaps' in
Operations Research Vol. 56, No. 2, March�April 2008, pp. 286�303
*/
virtual Disposable<std::vector<Probability> > probsBeingNthEvent(Size n,
const Date& d) const;
//! Pearsons' default probability correlation.
virtual Real defaultCorrelation(const Date& d, Size iName,
Size jName) const;
virtual Real expectedTrancheLoss(const Date& d) const;
virtual std::pair<Real, Real> expectedTrancheLossInterval(const Date& d,
Probability confidencePerc) const;
virtual Disposable<std::map<Real, Probability> >
lossDistribution(const Date& d) const;
virtual Histogram computeHistogram(const Date& d) const;
virtual Real expectedShortfall(const Date& d, Real percent) const;
virtual Real percentile(const Date& d, Real percentile) const;
/*! Returns the VaR value for a given percentile and the 95 confidence
interval of that value. */
virtual boost::tuples::tuple<Real, Real, Real> percentileAndInterval(
const Date& d, Real percentile) const;
/*! Distributes the total VaR amount along the portfolio counterparties.
@param loss Loss amount (in loss units).
*/
virtual Disposable<std::vector<Real> > splitVaRLevel(const Date& date,
Real loss) const;
/*! Distributes the total VaR amount along the portfolio counterparties.
Provides confidence interval for split so that portfolio optimization
can be performed outside those limits.
@param loss Loss amount (in loss units).
*/
virtual Disposable<std::vector<std::vector<Real> > > splitVaRAndError(
const Date& date, Real loss, Probability confInterval) const;
//@}
public:
virtual ~RandomLM() {}
private:
BigNatural seed_;
protected:
const Size numFactors_;
const Size numLMVars_;
const Size nSims_;
mutable std::vector<std::vector<simEvent<derivedRandomLM<copulaPolicy,
USNG > > > > simsBuffer_;
mutable copulaPolicy copula_;
mutable boost::shared_ptr<copulaRNG_type> copulasRng_;
// Maximum time inversion horizon
static const Size maxHorizon_ = 4050; // over 11 years
// Inversion probability limits are computed by children in initdates()
};
/* ---- Statistics --------------------------------------------------- */
template<template <class, class> class D, class C, class URNG>
Probability RandomLM<D, C, URNG>::probAtLeastNEvents(Size n,
const Date& d) const
{
calculate();
Date today = Settings::instance().evaluationDate();
QL_REQUIRE(d>today, "Date for statistic must be in the future.");
// casted to natural to avoid warning, we have just checked the sign
Natural val = d.serialNumber() - today.serialNumber();
if(n==0) return 1.;
Real counts = 0.;
for(Size iSim=0; iSim < nSims_; iSim++) {
Size simCount = 0;
const std::vector<simEvent<D<C, URNG> > >& events =
getSim(iSim);
for(Size iEvt=0; iEvt < events.size(); iEvt++)
// duck type on the members:
if(val > events[iEvt].dayFromRef) simCount++;
if(simCount >= n) counts++;
}
return counts/nSims_;
// \todo Provide confidence interval
}
template<template <class, class> class D, class C, class URNG>
Disposable<std::vector<Probability> >
RandomLM<D, C, URNG>::probsBeingNthEvent(Size n,
const Date& d) const
{
calculate();
Size basketSize = basket_->size();
QL_REQUIRE(n>0 && n<=basketSize, "Impossible number of defaults.");
Date today = Settings::instance().evaluationDate();
QL_REQUIRE(d>today, "Date for statistic must be in the future.");
// casted to natural to avoid warning, we have just checked the sign
Natural val = d.serialNumber() - today.serialNumber();
std::vector<Probability> hitsByDate(basketSize, 0.);
for(Size iSim=0; iSim < nSims_; iSim++) {
const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
std::map<unsigned short, unsigned short> namesDefaulting;
for(Size iEvt=0; iEvt < events.size(); iEvt++) {
// if event is within time horizon...
if(val > events[iEvt].dayFromRef)
//...count it. notice insertion sorts by date.
namesDefaulting.insert(std::make_pair<unsigned short,
unsigned short>(events[iEvt].dayFromRef,
events[iEvt].nameIdx));
}
if(namesDefaulting.size() >= n) {
std::map<unsigned short, unsigned short>::const_iterator
itdefs = namesDefaulting.begin();
// locate nth default in time:
std::advance(itdefs, n-1);
// update statistic:
hitsByDate[itdefs->second]++;
}
}
std::transform(hitsByDate.begin(), hitsByDate.end(),
hitsByDate.begin(), std::bind2nd(std::divides<Real>(), nSims_));
return hitsByDate;
// \todo Provide confidence interval
}
template<template <class, class> class D, class C, class URNG>
Real RandomLM<D, C, URNG>::defaultCorrelation(const Date& d,
Size iName, Size jName) const
{
// a control variate with the probabilities is possible
calculate();
Date today = Settings::instance().evaluationDate();
QL_REQUIRE(d>today, "Date for statistic must be in the future.");
// casted to natural to avoid warning, we have just checked the sign
Natural val = d.serialNumber() - today.serialNumber();
Real expectedDefiDefj = 0.;// E[1_i 1_j]
// the rest of magnitudes have known values (probabilities) but that
// would distort the simulation results.
Real expectedDefi = 0.;
Real expectedDefj = 0.;
for(Size iSim=0; iSim < nSims_; iSim++) {
const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
Real imatch = 0., jmatch = 0.;
for(Size iEvt=0; iEvt < events.size(); iEvt++) {
if((val > events[iEvt].dayFromRef) &&
(events[iEvt].nameIdx == iName)) imatch = 1.;
if((val > events[iEvt].dayFromRef) &&
(events[iEvt].nameIdx == jName)) jmatch = 1.;
}
expectedDefiDefj += imatch * jmatch;
expectedDefi += imatch;
expectedDefj += jmatch;
}
expectedDefiDefj = expectedDefiDefj / (nSims_-1);// unbiased
expectedDefi = expectedDefi / nSims_;
expectedDefj = expectedDefj / nSims_;
return (expectedDefiDefj - expectedDefi*expectedDefj) /
std::sqrt((expectedDefi*expectedDefj*(1.-expectedDefi)
*(1.-expectedDefj)));
// \todo Provide confidence interval
}
template<template <class, class> class D, class C, class URNG>
Real RandomLM<D, C, URNG>::expectedTrancheLoss(
const Date& d) const {
return expectedTrancheLossInterval(d, 0.95).first;
}
template<template <class, class> class D, class C, class URNG>
std::pair<Real, Real> RandomLM<D, C, URNG>::expectedTrancheLossInterval(
const Date& d, Probability confidencePerc) const
{
calculate();
Date today = Settings::instance().evaluationDate();
Date::serial_type val = d.serialNumber() - today.serialNumber();
Real attachAmount = basket_->attachmentAmount();
Real detachAmount = basket_->detachmentAmount();
// Real trancheLoss= 0.;
GeneralStatistics lossStats;
for(Size iSim=0; iSim < nSims_; iSim++) {
const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
Real portfSimLoss=0.;
for(Size iEvt=0; iEvt < events.size(); iEvt++) {
// if event is within time horizon...
if(val > static_cast<Date::serial_type>(events[iEvt].dayFromRef)) {
Size iName = events[iEvt].nameIdx;
// ...and is contained in the basket.
portfSimLoss +=
basket_->exposure(basket_->names()[iName],
Date(events[iEvt].dayFromRef +
today.serialNumber())) *
(1.-getEventRecovery(events[iEvt]));
}
}
lossStats.add(// d ates? current losses? realized defaults, not yet
std::min(std::max(portfSimLoss - attachAmount, 0.),
detachAmount - attachAmount) );
}
return std::make_pair(lossStats.mean(), lossStats.errorEstimate() *
InverseCumulativeNormal::standard_value(0.5*(1.+confidencePerc)));
}
template<template <class, class> class D, class C, class URNG>
Disposable<std::map<Real, Probability> >
RandomLM<D, C, URNG>::lossDistribution(const Date& d) const {
Histogram hist = computeHistogram(d);
std::map<Real, Probability> distrib;
// prob of losses less or equal to
Real suma = hist.frequency(0);
distrib.insert(std::make_pair(0., suma));
for(Size i=1; i<hist.bins(); i++) {
suma += hist.frequency(i);
distrib.insert(std::make_pair( hist.breaks()[i-1], suma ));
}
return distrib;
}
template<template <class, class> class D, class C, class URNG>
Histogram RandomLM<D, C, URNG>::computeHistogram(const Date& d) const {
std::vector<Real> data;
std::set<Real> keys;// attainable loss values
keys.insert(0.);
Date today = Settings::instance().evaluationDate();
Date::serial_type val = d.serialNumber() - today.serialNumber();
// redundant test? should have been tested by the basket caller?
QL_REQUIRE(d >= today,
"Requested percentile date must lie after computation date.");
calculate();
Real attachAmount = basket_->attachmentAmount();
Real detachAmount = basket_->detachmentAmount();
for(Size iSim=0; iSim < nSims_; iSim++) {
const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
Real portfSimLoss=0.;
for(Size iEvt=0; iEvt < events.size(); iEvt++) {
if(val > static_cast<Date::serial_type>(events[iEvt].dayFromRef)) {
Size iName = events[iEvt].nameIdx;
// test needed (here and the others) to reuse simulations:
// if(basket_->pool()->has(copula_->pool()->names()[iName]))
portfSimLoss +=
basket_->exposure(basket_->names()[iName],
Date(events[iEvt].dayFromRef +
today.serialNumber())) *
(1.-getEventRecovery(events[iEvt]));
}
}
data.push_back(std::min(std::max(portfSimLoss - attachAmount, 0.),
detachAmount - attachAmount));
keys.insert(data.back());
}
// avoid using as many points as in the simulation.
Size nPts = std::min<Size>(data.size(), 150);// fix
return Histogram(data.begin(), data.end(), nPts);
}
template<template <class, class> class D, class C, class URNG>
Real RandomLM<D, C, URNG>::expectedShortfall(const Date& d,
Real percent) const {
const Date today = Settings::instance().evaluationDate();
QL_REQUIRE(d >= today,
"Requested percentile date must lie after computation date.");
calculate();
Real attachAmount = basket_->attachmentAmount();
Real detachAmount = basket_->detachmentAmount();
Date::serial_type val = d.serialNumber() - today.serialNumber();
if(val <= 0) return 0.;// plus basket realized losses
//GenericRiskStatistics<GeneralStatistics> statsX;
std::vector<Real> losses;
for(Size iSim=0; iSim < nSims_; iSim++) {
const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
Real portfSimLoss=0.;
for(Size iEvt=0; iEvt < events.size(); iEvt++) {
if(val > static_cast<Date::serial_type>(events[iEvt].dayFromRef)) {
Size iName = events[iEvt].nameIdx;
// ...and is contained in the basket.
//if(basket_->pool()->has(copula_->pool()->names()[iName]))
portfSimLoss +=
basket_->exposure(basket_->names()[iName],
Date(events[iEvt].dayFromRef +
today.serialNumber())) *
(1.-getEventRecovery(events[iEvt]));
}
}
portfSimLoss = std::min(std::max(portfSimLoss - attachAmount, 0.),
detachAmount - attachAmount);
losses.push_back(portfSimLoss);
}
std::sort(losses.begin(), losses.end());
Real posit = std::ceil(percent * nSims_);
posit = posit >= 0. ? posit : 0.;
Size position = static_cast<Size>(posit);
Real perctlInf = losses[position];//q_{\alpha}
// the prob of values strictly larger than the quantile value.
Probability probOverQ =
static_cast<Real>(std::distance(losses.begin() + position,
losses.end())) / static_cast<Real>(nSims_);
return ( perctlInf * (1.-percent-probOverQ) +//<-correction term
std::accumulate(losses.begin() + position, losses.end(), Real(0.))/nSims_
)/(1.-percent);
/* Alternative ESF definition; find the first loss larger than the
one of the percentile. Notice the choice here, the expected shortfall
is understood in the sense that we are looking for the average given
than losses are above a certain value rather than above a certain
probability:
(Unlikely to be the algorithm of choice)*/
/*
std::vector<Real>::iterator itPastPerc =
std::find_if(losses.begin() + position, losses.end(),
std::bind1st(std::less<Real>(), perctlInf));
// notice if the sample is flat at the end this might be zero
Size pointsOverVal = nSims_ - std::distance(itPastPerc, losses.end());
return pointsOverVal == 0 ? 0. :
std::accumulate(itPastPerc, losses.end(), 0.) / pointsOverVal;
*/
/* For the definition of ESF see for instance: 'Quantitative Risk
Management' by A.J. McNeil, R.Frey and P.Embrechts, princeton series in
finance, 2005; equations on page 39 sect 2.12:
$q_{\alpha}(F) = inf{x \in R : F(x) \le \alpha}$
and equation 2.25 on p. 45:
$ESF_{\alpha} = \frac{1}{1-\alpha} [E(L; L \ge q_{\alpha} ) +
q_{\alpha} (1-\alpha-P(L \ge q_{\alpha})) ]$
The second term accounts for non continuous distributions.
*/
}
template<template <class, class> class D, class C, class URNG>
Real RandomLM<D, C, URNG>::percentile(const Date& d, Real perc) const {
// need to specify return type in tuples' get is parametric
return percentileAndInterval(d, perc).template get<0>();
}
/* See Appendix-A of "Evaluating value-at-risk methodologies: Accuracy
versus computational time.", M. Pritsker, Wharton FIC, November 1996
Strictly speaking this gives the interval with a 95% probability of
the true value being within the interval; which is different to the error
of the stimator just computed. See the reference for a discussion.
*/
template<template <class, class> class D, class C, class URNG>
boost::tuples::tuple<Real, Real, Real> // disposable?
RandomLM<D, C, URNG>::percentileAndInterval(const Date& d,
Real percentile) const {
QL_REQUIRE(percentile >= 0. && percentile <= 1.,
"Incorrect percentile");
calculate();
Real attachAmount = basket_->attachmentAmount();
Real detachAmount = basket_->detachmentAmount();
std::vector<Real> rankLosses;
Date today = Settings::instance().evaluationDate();
Date::serial_type val = d.serialNumber() - today.serialNumber();
for(Size iSim=0; iSim < nSims_; iSim++) {
const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
Real portfSimLoss=0.;
for(Size iEvt=0; iEvt < events.size(); iEvt++) {
if(val > static_cast<Date::serial_type>(events[iEvt].dayFromRef)) {
Size iName = events[iEvt].nameIdx;
// if(basket_->pool()->has(copula_->pool()->names()[iName]))
portfSimLoss +=
basket_->exposure(basket_->names()[iName],
Date(events[iEvt].dayFromRef +
today.serialNumber())) *
(1.-getEventRecovery(events[iEvt]));
}
}
portfSimLoss = std::min(std::max(portfSimLoss - attachAmount, 0.),
detachAmount - attachAmount);
// update dataset for rank stat:
rankLosses.push_back(portfSimLoss);
}
std::sort(rankLosses.begin(), rankLosses.end());
Size quantilePosition = static_cast<Size>(floor(nSims_*percentile));
Real quantileValue = rankLosses[quantilePosition];
// compute confidence interval:
const Probability confInterval = 0.95;// as an argument?
Real lowerPercentile, upperPercentile;
Size r = quantilePosition - 1;
Size s = quantilePosition + 1;
bool rLocked = false,
sLocked = false;
// Size rfinal = 0,
// sfinal = 0;
for(Size delta=1; delta < quantilePosition; delta++) {
Real cached =
incompleteBetaFunction(Real(s), Real(nSims_+1-s),
percentile, 1.e-8, 500);
Real pMinus =
/* There was a fix in the repository on the gammadistribution. It
might impact these, it might be neccesary to multiply these values
by '-1'*/
incompleteBetaFunction(Real(r+1), Real(nSims_-r),
percentile, 1.e-8, 500)
- cached;
Real pPlus =
incompleteBetaFunction(Real(r), Real(nSims_-r+1),
percentile, 1.e-8, 500)
- cached;
if((pMinus > confInterval) && !rLocked ) {
// rfinal = r + 1;
rLocked = true;
}
if((pPlus >= confInterval) && !sLocked) {
// sfinal = s;
sLocked = true;
}
if(rLocked && sLocked) break;
r--;
s++;
s = std::min(nSims_-1, s);
}
lowerPercentile = rankLosses[r];
upperPercentile = rankLosses[s];
return boost::tuples::tuple<Real, Real, Real>(quantileValue,
lowerPercentile, upperPercentile);
}
template<template <class, class> class D, class C, class URNG>
Disposable<std::vector<Real> > RandomLM<D, C, URNG>::splitVaRLevel(
const Date& date, Real loss) const
{
std::vector<Real> varLevels = splitVaRAndError(date, loss, 0.95)[0];
// turn relative units into absolute:
std::transform(varLevels.begin(), varLevels.end(), varLevels.begin(),
std::bind1st(std::multiplies<Real>(), loss));
return varLevels;
}
// parallelize this one(if possible), it is really expensive
template<template <class, class> class D, class C, class URNG>
/* FIX ME: some trouble on limit cases, like zero loss or no losses over the
requested level.*/
Disposable<std::vector<std::vector<Real> > >
RandomLM<D, C, URNG>::splitVaRAndError(const Date& date, Real loss,
Probability confInterval) const
{
/* Check 'loss' value integrity: i.e. is within tranche limits? (should
have been done basket...)*/
calculate();
Real attachAmount = basket_->attachmentAmount();
Real detachAmount = basket_->detachmentAmount();
Size numLiveNames = basket_->remainingSize();
std::vector<Real> split(numLiveNames, 0.);
std::vector<GeneralStatistics> splitStats(numLiveNames,
GeneralStatistics());
Date today = Settings::instance().evaluationDate();
Date::serial_type val = date.serialNumber() - today.serialNumber();
for(Size iSim=0; iSim < nSims_; iSim++) {
const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
Real portfSimLoss=0.;
//std::vector<Real> splitBuffer(numLiveNames_, 0.);
std::vector<simEvent<D<C, URNG> > > splitEventsBuffer;
for(Size iEvt=0; iEvt < events.size(); iEvt++) {
if(val > static_cast<Date::serial_type>(events[iEvt].dayFromRef)) {
Size iName = events[iEvt].nameIdx;
// if(basket_->pool()->has(copula_->pool()->names()[iName])) {
portfSimLoss +=
basket_->exposure(basket_->names()[iName],
Date(events[iEvt].dayFromRef +
today.serialNumber())) *
(1.-getEventRecovery(events[iEvt]));
//and will sort later if buffer applies:
splitEventsBuffer.push_back(events[iEvt]);
}
}
portfSimLoss = std::min(std::max(portfSimLoss - attachAmount, 0.),
detachAmount - attachAmount);
/* second pass; split is conditional to total losses within target
losses/percentile: */
Real ptflCumulLoss = 0.;
if(portfSimLoss > loss) {
std::sort(splitEventsBuffer.begin(), splitEventsBuffer.end());
//NOW THIS:
split.assign(numLiveNames, 0.);
/* if the name triggered a loss in the portf limits assign
this loss to that name.. */
for(Size i=0; i<splitEventsBuffer.size(); i++) {
Size iName = splitEventsBuffer[i].nameIdx;
Real lossName =
// allows amortizing (others should be like this)
// basket_->remainingNotionals(Date(simsBuffer_[i].dayFromRef +
// today.serialNumber()))[iName] *
basket_->exposure(basket_->names()[iName],
Date(splitEventsBuffer[i].dayFromRef +
today.serialNumber())) *
(1.-getEventRecovery(splitEventsBuffer[i]));
Real tranchedLossBefore =
std::min(std::max(ptflCumulLoss - attachAmount, 0.),
detachAmount - attachAmount);
ptflCumulLoss += lossName;
Real tranchedLossAfter =
std::min(std::max(ptflCumulLoss - attachAmount, 0.),
detachAmount - attachAmount);
// assign new losses:
split[iName] += tranchedLossAfter - tranchedLossBefore;
}
for(Size iName=0; iName<numLiveNames; iName++) {
splitStats[iName].add(split[iName] /
std::min(std::max(ptflCumulLoss - attachAmount, 0.),
detachAmount - attachAmount) );
}
}
}
// Compute error in VaR split
std::vector<Real> means, rangeUp, rangeDown;
Real confidFactor = InverseCumulativeNormal()(0.5+confInterval/2.);
for(Size iName=0; iName<numLiveNames; iName++) {
means.push_back(splitStats[iName].mean());
Real error = confidFactor * splitStats[iName].errorEstimate() ;
rangeDown.push_back(means.back() - error);
rangeUp.push_back(means.back() + error);
}
std::vector<std::vector<Real> > results;
results.push_back(means);
results.push_back(rangeDown);
results.push_back(rangeUp);
return results;
}
// --------- Time inversion solver target function: -----------------------
/* It could be argued that this concept is part of the copula (more generic).
In general when the modelled magnitude is parametric one can solve for
inversion to get the parameter value for a given magnitude value (provided
the modelled variable dependence in invertible). In this particular problem
the parameter is Time and it is solved here where we are alredy in the
context of default
See default transition models for another instance of this inversion.
Alternatively use the faster trick (flat HR) mentioned in the code or make
the algorithm parametric on the type of interpolation in the DefautlTS
*/
namespace detail {// not template dependent .....move it
//! Utility for the numerical time solver
class Root {
public:
/* See a faster algorithm (neeeds to locate the points) in
D.O'KANE p.249 sect 13.5 */
Root(const Handle<DefaultProbabilityTermStructure> dts, Real pd)
: dts_(dts), pd_(pd), curveRef_(dts->referenceDate()) {}
/* The cast I am forcing here comes from the requirement of 1D
solvers to take in a target (cost) function of Real domain. It could
be possible to change the template arg F in the 1D solvers to a
boost function and then use the (template arg) domain argument type
of the function for use with the 'guess' and operator() ?
*/
Real operator()(Real t) const {
QL_REQUIRE (t >= 0.0, "t < 0");
/* As long as this doesnt involve modifying a mutable member
it should be thread safe (they are const methods and access is
read only)
*/
return dts_->defaultProbability(curveRef_ +
Period(static_cast<Integer>(t), Days), true) - pd_;
}
private:
const Handle<DefaultProbabilityTermStructure> dts_;
Real pd_;
const Date curveRef_;
};
}
/*
---------------------------------------------------------------------------
---------------------------------------------------------------------------
*/
// move this one to a separte file?
/*! Random default with deterministic recovery event type.\par
Stores sims results in a bitfield buffer for lean memory storage.
Although strictly speaking this is not guaranteed by the compiler it
amounts to reducing the memory storage by half.
Some computations, like conditional statistics, precise that all sims
results be available.
*/
template<class , class > class RandomDefaultLM;
template<class copulaPolicy, class USNG>
struct simEvent<RandomDefaultLM<copulaPolicy, USNG> > {
simEvent(unsigned int n, unsigned int d)
: nameIdx(n), dayFromRef(d){}
unsigned int nameIdx : 16; // can index up to 65535 names
unsigned int dayFromRef : 16; //indexes up to 65535 days ~179 years
bool operator<(const simEvent& evt) const {
return dayFromRef < evt.dayFromRef;
}
};
/*! Default only latent model simulation with trivially fixed recovery
amounts.
*/
template<class copulaPolicy, class USNG = SobolRsg>
class RandomDefaultLM : public RandomLM<RandomDefaultLM, copulaPolicy, USNG>
{
private:
typedef simEvent<RandomDefaultLM> defaultSimEvent;
// \todo Consider this to be only a ConstantLossLM instead
const boost::shared_ptr<DefaultLatentModel<copulaPolicy> > copula_;
const std::vector<Real> recoveries_;
// for time inversion:
Real accuracy_;
public:
// \todo: Allow a constructor building its own default latent model.
RandomDefaultLM(
const boost::shared_ptr<DefaultLatentModel<copulaPolicy> >& copula,
const std::vector<Real>& recoveries = std::vector<Real>(),
Size nSims = 0,// stats will crash on div by zero, FIX ME.
Real accuracy = 1.e-6,
BigNatural seed = 2863311530)
: RandomLM< ::QuantLib::RandomDefaultLM, copulaPolicy, USNG>
(copula->numFactors(), copula->size(), copula->copula(),
nSims, seed ),
copula_(copula), //<- renmae to latentModel_ or defautlLM_;
recoveries_(recoveries.size()==0 ? std::vector<Real>(copula->size(),
0.) : recoveries),
accuracy_(accuracy)
{
// redundant through basket?
this->registerWith(Settings::instance().evaluationDate());
this->registerWith(copula_);
}
RandomDefaultLM(
const boost::shared_ptr<ConstantLossLatentmodel<copulaPolicy> >&
copula,
Size nSims = 0,// stats will crash on div by zero, FIX ME.
Real accuracy = 1.e-6,
BigNatural seed = 2863311530)
: RandomLM< ::QuantLib::RandomDefaultLM, copulaPolicy, USNG>
(copula->numFactors(), copula->size(), copula->copula(),
nSims, seed ),
copula_(copula),
recoveries_(copula->recoveries()),
accuracy_(accuracy)
{
// redundant through basket?
this->registerWith(Settings::instance().evaluationDate());
this->registerWith(copula_);
}
// grant access to static polymorphism:
/* While this works on g++, VC9 refuses to compile it.
Not completely sure whos right; individually making friends of the
calling members or writting explicitly the derived class T parameters
throws the same errors.
The access is then open to the member fucntions.
Another solution is to use this http://accu.org/index.php/journals/296
It might well be that gcc is allowing some c11 features silently, which
wont pass on a lower gcc version.
*/
friend class RandomLM< ::QuantLib::RandomDefaultLM, copulaPolicy, USNG>;
protected:
void nextSample(const std::vector<Real>& values) const;
void initDates() const {
/* Precalculate horizon time default probabilities (used to
determine if the default took place and subsequently compute its
event time)
*/
Date today = Settings::instance().evaluationDate();
Date maxHorizonDate = today + Period(this->maxHorizon_, Days);
const boost::shared_ptr<Pool>& pool = this->basket_->pool();
for(Size iName=0; iName < this->basket_->size(); ++iName)//use'live'
horizonDefaultPs_.push_back(pool->get(pool->names()[iName]).
defaultProbability(this->basket_->defaultKeys()[iName])
->defaultProbability(maxHorizonDate, true));
}
Real getEventRecovery(const defaultSimEvent& evt) const {
return recoveries_[evt.nameIdx];
}
Real expectedRecovery(const Date&, Size iName,
const DefaultProbKey&) const {
// deterministic
return recoveries_[iName];
}
protected:
Real latentVarValue(const std::vector<Real>& factorsSample,
Size iVar) const {
return copula_->latentVarValue(factorsSample, iVar);
}
//allows statistics to know the portfolio size (could be moved to parent
//invoking duck typing on the variable name or a handle to the basket)
Size basketSize() const { return copula_->size(); }
private:
void resetModel() /*const*/ {
/* Explore: might save recalculation if the basket is the same
(some situations, like BC or control variates) in that case do not
update, only reset the copula's basket.
*/
copula_->resetBasket(this->basket_.currentLink());
QL_REQUIRE(this->basket_->size() == copula_->size(),
"Incompatible basket and model sizes.");
QL_REQUIRE(recoveries_.size() == this->basket_->size(),
"Incompatible basket and recovery sizes.");
// invalidate current calculations if any and notify observers
LazyObject::update();
}
// This one and the buffer might be moved to the parent, only some
// dates might be specific to a particular model.
// Default probabilities for each name at the time of the maximun
// horizon date. Cached for perf.
mutable std::vector<Probability> horizonDefaultPs_;
};
template<class C, class URNG>
void RandomDefaultLM<C, URNG>::nextSample(
const std::vector<Real>& values) const
{
const boost::shared_ptr<Pool>& pool = this->basket_->pool();
// starts with no events
this->simsBuffer_.push_back(std::vector<defaultSimEvent> ());
for(Size iName=0; iName<copula_->size(); iName++) {
Real latentVarSample =
copula_->latentVarValue(values, iName);
Probability simDefaultProb =
copula_->cumulativeY(latentVarSample, iName);
// If the default simulated lies before the max date:
if (horizonDefaultPs_[iName] >= simDefaultProb) {
const Handle<DefaultProbabilityTermStructure>& dfts =
pool->get(pool->names()[iName]).// use 'live' names
defaultProbability(this->basket_->defaultKeys()[iName]);
// compute and store default time with respect to the
// curve ref date:
Size dateSTride =
static_cast<Size>(Brent().solve(// casted from Real:
detail::Root(dfts, simDefaultProb),
accuracy_,0.,1.));
/*
// value if one approximates to a flat HR;
// faster (>x2) but it introduces an error:..
// \todo: see how to include this 'polymorphically'.
// While not the case in pricing in risk metrics/real
// probabilities the curves are often flat
static_cast<Size>(ceil(maxHorizon_ *
std::log(1.-simDefaultProb)
/std::log(1.-data_.horizonDefaultPs_[iName])));
*/
this->simsBuffer_.back().push_back(defaultSimEvent(iName,
dateSTride));
//emplace_back
}
/* Used to remove sims with no events. Uses less memory, faster
post-statistics. But only if all names in the portfolio have low
default probability, otherwise is more expensive and sim access has
to be modified. However low probability is also an indicator that
variance reduction is needed. */
}
}
// Common usage typedefs (notice they vary in the multithread version)
// ---------- Gaussian default generators options ------------------------
/* Uses copula direct normal inversion and MT generator
typedef RandomDefaultLM<GaussianCopulaPolicy,
RandomSequenceGenerator<MersenneTwisterUniformRng> >
GaussianRandomDefaultLM;
*/
/* Uses BoxMuller for gaussian generation, bypassing copula inversions
typedef RandomDefaultLM<GaussianCopulaPolicy, RandomSequenceGenerator<
BoxMullerGaussianRng<MersenneTwisterUniformRng> > >
GaussianRandomDefaultLM;
*/
/* Default case, uses the copula inversion directly and sobol sequence */
typedef RandomDefaultLM<GaussianCopulaPolicy> GaussianRandomDefaultLM;
// ---------- T default generators options ----------------------------
/* Uses copula inversion and MT base generation
typedef RandomDefaultLM<TCopulaPolicy,
RandomSequenceGenerator<MersenneTwisterUniformRng> > TRandomDefaultLM;
*/
/* Uses MT and polar direct strudent-T generation
typedef RandomDefaultLM<TCopulaPolicy,
RandomSequenceGenerator<PolarStudentTRng<MersenneTwisterUniformRng> > >
TRandomDefaultLM;
*/
/* Default case, uses sobol sequence and copula inversion */
typedef RandomDefaultLM<TCopulaPolicy> TRandomDefaultLM;
}
#endif
|