/usr/include/ql/experimental/credit/cdo.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file cdo.hpp
\brief collateralized debt obligation
*/
#ifndef quantlib_cdo_hpp
#define quantlib_cdo_hpp
#include <ql/instrument.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/termstructures/defaulttermstructure.hpp>
#include <ql/experimental/credit/lossdistribution.hpp>
#include <ql/experimental/credit/onefactorcopula.hpp>
#include <ql/time/schedule.hpp>
namespace QuantLib {
//! collateralized debt obligation
/*! The instrument prices a mezzanine CDO tranche with loss given
default between attachment point \f$ D_1\f$ and detachment
point \f$ D_2 > D_1 \f$.
For purchased protection, the instrument value is given by the
difference of the protection value \f$ V_1 \f$ and premium
value \f$ V_2 \f$,
\f[ V = V_1 - V_2. \f]
The protection leg is priced as follows:
- Build the probability distribution for volume of defaults
\f$ L \f$ (before recovery) or Loss Given Default \f$ LGD =
(1-r)\,L \f$ at times/dates \f$ t_i, i=1, ..., N\f$ (premium
schedule times with intermediate steps)
- Determine the expected value
\f$ E_i = E_{t_i}\,\left[Pay(LGD)\right] \f$
of the protection payoff \f$ Pay(LGD) \f$ at each time
\f$ t_i\f$ where
\f[
Pay(L) = min (D_1, LGD) - min (D_2, LGD) = \left\{
\begin{array}{lcl}
\displaystyle 0 &;& LGD < D_1 \\
\displaystyle LGD - D_1 &;& D_1 \leq LGD \leq D_2 \\
\displaystyle D_2 - D_1 &;& LGD > D_2
\end{array}
\right.
\f]
- The protection value is then calculated as
\f[ V_1 \:=\: \sum_{i=1}^N (E_i - E_{i-1}) \cdot d_i \f]
where \f$ d_i\f$ is the discount factor at time/date \f$ t_i \f$
The premium is paid on the protected notional amount,
initially \f$ D_2 - D_1. \f$ This notional amount is reduced
by the expected protection payments \f$ E_i \f$ at times
\f$ t_i, \f$ so that the premium value is calculated as
\f[
V_2 = m \, \cdot \sum_{i=1}^N \,(D_2 - D_1 - E_i)
\cdot \Delta_{i-1,i}\,d_i
\f]
where \f$ m \f$ is the premium rate, \f$ \Delta_{i-1, i}\f$ is
the day count fraction between date/time \f$ t_{i-1}\f$ and
\f$ t_i.\f$
The construction of the portfolio loss distribution \f$ E_i
\f$ is based on the probability bucketing algorithm described
in
<strong>
John Hull and Alan White, "Valuation of a CDO and nth to default CDS
without Monte Carlo simulation", Journal of Derivatives 12, 2, 2004
</strong>
The pricing algorithm allows for varying notional amounts and
default termstructures of the underlyings.
\todo Investigate and fix cases \f$ E_{i+1} < E_i. \f$
*/
class CDO : public Instrument {
public:
/*! \param attachment fraction of the LGD where protection starts
\param detachment fraction of the LGD where protection ends
\param nominals vector of basket nominal amounts
\param basket default basket represented by a vector of
default term structures that allow
computing single name default
probabilities depending on time
\param copula one-factor copula
\param protectionSeller sold protection if set to true, purchased
otherwise
\param premiumSchedule schedule for premium payments
\param premiumRate annual premium rate, e.g. 0.05 for 5% p.a.
\param dayCounter day count convention for the premium rate
\param recoveryRate recovery rate as a fraction
\param upfrontPremiumRate premium as a tranche notional fraction
\param yieldTS yield term structure handle
\param nBuckets number of distribution buckets
\param integrationStep time step for integrating over one
premium period; if larger than premium
period length, a single step is taken
*/
CDO (Real attachment,
Real detachment,
const std::vector<Real>& nominals,
const std::vector<Handle<DefaultProbabilityTermStructure> >& basket,
const Handle<OneFactorCopula>& copula,
bool protectionSeller,
const Schedule& premiumSchedule,
Rate premiumRate,
const DayCounter& dayCounter,
Rate recoveryRate,
Rate upfrontPremiumRate,
const Handle<YieldTermStructure>& yieldTS,
Size nBuckets,
const Period& integrationStep = Period(10, Years));
Real nominal() { return nominal_; }
Real lgd() { return lgd_; }
Real attachment () { return attachment_; }
Real detachment () { return detachment_; }
std::vector<Real> nominals() { return nominals_; }
Size size() { return basket_.size(); }
bool isExpired () const;
Rate fairPremium() const;
Rate premiumValue () const;
Rate protectionValue () const;
Size error () const;
private:
void setupExpired() const;
void performCalculations() const;
Real expectedTrancheLoss (Date d) const;
Real attachment_;
Real detachment_;
std::vector<Real> nominals_;
std::vector<Handle<DefaultProbabilityTermStructure> > basket_;
Handle<OneFactorCopula> copula_;
bool protectionSeller_;
Schedule premiumSchedule_;
Rate premiumRate_;
DayCounter dayCounter_;
Rate recoveryRate_;
Rate upfrontPremiumRate_;
Handle<YieldTermStructure> yieldTS_;
Size nBuckets_; // number of buckets up to detachment point
Period integrationStep_;
std::vector<Real> lgds_;
Real nominal_; // total basket volume (sum of nominals_)
Real lgd_; // maximum loss given default (sum of lgds_)
Real xMax_; // tranche detachment point (tranche_ * nominal_)
Real xMin_; // tranche attachment point (tranche_ * nominal_)
mutable Size error_;
mutable Real premiumValue_;
mutable Real protectionValue_;
mutable Real upfrontPremiumValue_;
};
}
#endif
|