/usr/include/ql/experimental/credit/binomiallossmodel.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_binomial_loss_model_hpp
#define quantlib_binomial_loss_model_hpp
#include <ql/handle.hpp>
#include <ql/experimental/credit/basket.hpp>
#include <ql/experimental/credit/defaultlossmodel.hpp>
#include <ql/experimental/credit/constantlosslatentmodel.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/bind.hpp>
#include <algorithm>
#include <numeric>
namespace QuantLib {
/*! Binomial Defaultable Basket Loss Model\par
Models the portfolio loss distribution by approximatting it to an adjusted
binomial. Fits the two moments of the loss distribution through an adapted
binomial approximation. This simple model allows for portfolio inhomogeneity
with no excesive cost over the LHP.\par
See:\par
<b>Approximating Independent Loss Distributions with an Adjusted Binomial
Distribution</b> , Dominic O�Kane, 2007 EDHEC RISK AND ASSET MANAGEMENT
RESEARCH CENTRE \par
<b>Modelling single name and multi-name credit derivatives</b> Chapter
18.5.2, Dominic O�Kane, Wiley Finance, 2008 \par
The version presented here is adaptated to the multifactorial case
by computing a conditional binomial approximation; notice that the Binomial
is stable. This way the model can be used also in risk management models
rather than only in pricing. The copula is also left
undefined/arbitrary. \par
LLM: Loss Latent Model template parameter able to model default and
loss.\par
The model is allowed and arbitrary copula, although initially designed for
a Gaussian setup. If these exotic versions were not allowed the template
parameter can then be dropped but the use of random recoveries should be
added in some other way.
\todo untested/wip for the random recovery models.
\todo integrate with the previously computed probability inversions of
the cumulative functions.
*/
template<class LLM>
class BinomialLossModel : public DefaultLossModel {
public:
typedef typename LLM::copulaType copulaType;
BinomialLossModel(
const boost::shared_ptr<LLM>& copula)
: copula_(copula) { }
private:
void resetModel() {
/* say there are defaults and these havent settled... and this is
the engine to compute them.... is this the wrong place?:*/
attachAmount_ = basket_->remainingAttachmentAmount();
detachAmount_ = basket_->remainingDetachmentAmount();
copula_->resetBasket(basket_.currentLink());// forces interface
}
protected:
/*! Returns the probability of the default loss values given by the
method lossPoints.
*/
Disposable<std::vector<Real> >
expectedDistribution(const Date& date) const {
// precal date conditional magnitudes:
std::vector<Real> notionals = basket_->remainingNotionals(date);
std::vector<Probability> invProbs =
basket_->remainingProbabilities(date);
for(Size iName=0; iName<invProbs.size(); iName++)
invProbs[iName] =
copula_->inverseCumulativeY(invProbs[iName], iName);
return copula_->integratedExpectedValue(
boost::function<Disposable<std::vector<Real> > (
const std::vector<Real>& v1)>(
boost::bind(
&BinomialLossModel<LLM>::lossProbability,
this,
boost::cref(date), //d,
boost::cref(notionals),
boost::cref(invProbs),
_1)
)
);
}
//! attainable loss points this model provides
Disposable<std::vector<Real> > lossPoints(const Date&) const;
//! Returns the cumulative full loss distribution
Disposable<std::map<Real, Probability> >
lossDistribution(const Date& d) const;
//! Loss level for this percentile
Real percentile(const Date& d, Real percentile) const;
Real expectedShortfall(const Date&d, Real percentile) const;
Real expectedTrancheLoss(const Date& d) const;
protected:
// Model internal workings ----------------
//! Average loss per credit.
Real averageLoss(const Date&, const std::vector<Real>& reminingNots,
const std::vector<Real>&) const;
Real condTrancheLoss(const Date&, const std::vector<Real>& lossVals,
const std::vector<Real>& bsktNots,
const std::vector<Probability>& uncondDefProbs,
const std::vector<Real>&) const;
// expected as in time-value, not average, see literature
Disposable<std::vector<Real> >
expConditionalLgd(const Date& d,
const std::vector<Real>& mktFactors) const
{
std::vector<Real> condLgds;
const std::vector<Size>& evalDateLives = basket_->liveList();
for(Size i=0; i<evalDateLives.size(); i++)
condLgds.push_back(1.-copula_->conditionalRecovery(d,
evalDateLives[i], mktFactors));
return condLgds;
}
//! Loss probability density conditional on the market factor value.
// Heres where the burden of the algorithm setup lies.
Disposable<std::vector<Real> >
lossProbability(
const Date& date,
// expected exposures at the passed date, no wrong way means
// no dependence of the exposure with the mkt factor
const std::vector<Real>& bsktNots,
const std::vector<Real>& uncondDefProbInv,
const std::vector<Real>& mktFactor) const;
protected:
const boost::shared_ptr<LLM> copula_;
// cached arguments:
// remaining basket magnitudes:
mutable Real attachAmount_, detachAmount_;
};
//-------------------------------------------------------------------------
/* The algorithm to compute the prob. of n defaults in the basket is
recursive. For this reason theres no sense in returning the prob
distribution of a given number of defaults.
*/
template< class LLM>
Disposable<std::vector<Real> > BinomialLossModel<LLM>::lossProbability(
const Date& date,
const std::vector<Real>& bsktNots,
const std::vector<Real>& uncondDefProbInv,
const std::vector<Real>& mktFactors) const
{ // the model as it is does not model the exposures conditional to the
// mkt factr, otherwise this needs revision
/// model does not take the unconditional rr
Size bsktSize = basket_->remainingSize();
/* The conditional loss per unit notional of each name at time 'date'
The spot recovery model is returning for all i's:
\frac{\int_0^t [1-rr_i(\tau; \xi)] P_{def-i}(0, \tau; \xi) d\tau}
{P_{def-i}(0,t;\xi)}
and the constant recovery model is simply returning:
1-RR_i
*/
// conditional fractional LGD expected as given by the recovery model
// for the ramaining(live) names at the current eval date.
std::vector<Real> fractionalEL = expConditionalLgd(date, mktFactors);
std::vector<Real> lgdsLeft;
std::transform(fractionalEL.begin(), fractionalEL.end(),
bsktNots.begin(), std::back_inserter(lgdsLeft),
std::multiplies<Real>());
Real avgLgd =
std::accumulate(lgdsLeft.begin(), lgdsLeft.end(), Real(0.)) / bsktSize;
std::vector<Probability> condDefProb(bsktSize, 0.);
for(Size j=0; j<bsktSize; j++)//transform
condDefProb[j] =
copula_->conditionalDefaultProbabilityInvP(uncondDefProbInv[j],
j, mktFactors);
// of full portfolio:
Real avgProb = avgLgd <= QL_EPSILON ? 0. : // only if all are 0
std::inner_product(condDefProb.begin(),
condDefProb.end(), lgdsLeft.begin(), 0.)
/ (avgLgd * bsktSize);
// model parameters:
Real m = avgProb * bsktSize;
Real floorAveProb = std::min(Real(bsktSize-1), std::floor(Real(m)));
Real ceilAveProb = floorAveProb + 1.;
// nu_A
Real varianceBinom = avgProb * (1. - avgProb)/bsktSize;
// nu_E
std::vector<Probability> oneMinusDefProb;//: 1.-condDefProb[j]
std::transform(condDefProb.begin(), condDefProb.end(),
std::back_inserter(oneMinusDefProb),
std::bind1st(std::minus<Real>(), 1.));
//breaks condDefProb and lgdsLeft to spare memory
std::transform(condDefProb.begin(), condDefProb.end(),
oneMinusDefProb.begin(), condDefProb.begin(),
std::multiplies<Real>());
std::transform(lgdsLeft.begin(), lgdsLeft.end(),
lgdsLeft.begin(), lgdsLeft.begin(), std::multiplies<Real>());
Real variance = std::inner_product(condDefProb.begin(),
condDefProb.end(), lgdsLeft.begin(), 0.);
variance = avgLgd <= QL_EPSILON ? 0. :
variance / (bsktSize * bsktSize * avgLgd * avgLgd );
Real sumAves = -std::pow(ceilAveProb-m, 2)
- (std::pow(floorAveProb-m, 2) - std::pow(ceilAveProb,2.))
* (ceilAveProb-m);
Real alpha = (variance * bsktSize + sumAves)
/ (varianceBinom * bsktSize + sumAves);
// Full distribution:
// ....DO SOMETHING CHEAPER at least go up to the loss tranche limit.
std::vector<Probability> lossProbDensity(bsktSize+1, 0.);
if(avgProb >= 1.-QL_EPSILON) {
lossProbDensity[bsktSize] = 1.;
}else if(avgProb <= QL_EPSILON) {
lossProbDensity[0] = 1.;
}else{
/* FIX ME: With high default probabilities one only gets tiny values
at the end and the sum of probabilities in the
conditional distribution does not add up to one. It might be due to
the fact that recursion should be done in the other direction as
pointed out in the book. This is numerical.
*/
Probability probsRatio = avgProb/(1.-avgProb);
lossProbDensity[0] = std::pow(1.-avgProb,
static_cast<Real>(bsktSize));
for(Size i=1; i<bsktSize+1; i++) // recursive to avoid factorial
lossProbDensity[i] = lossProbDensity[i-1] * probsRatio
* (bsktSize-i+1.)/i;
// redistribute probability:
for(Size i=0; i<bsktSize+1; i++)
lossProbDensity[i] *= alpha;
// adjust average
Real epsilon = (1.-alpha)*(ceilAveProb-m);
Real epsilonPlus = 1.-alpha-epsilon;
lossProbDensity[static_cast<Size>(floorAveProb)] += epsilon;
lossProbDensity[static_cast<Size>(ceilAveProb)] += epsilonPlus;
}
return lossProbDensity;
}
//-------------------------------------------------------------------------
template< class LLM>
Real BinomialLossModel<LLM>::averageLoss(
const Date& d,
const std::vector<Real>& reminingNots,
const std::vector<Real>& mktFctrs) const
{
Size bsktSize = basket_->remainingSize();
/* The conditional loss per unit notional of each name at time 'date'
The spot recovery model is returning for all i's:
\frac{\int_0^t [1-rr_i(\tau; \xi)] P_{def-i}(0, \tau; \xi) d\tau}
{P_{def-i}(0,t;\xi)}
and the constant recovery model is simply returning:
1-RR_i
*/
std::vector<Real> fractionalEL = expConditionalLgd(d, mktFctrs);
Real notBskt = std::accumulate(reminingNots.begin(),
reminingNots.end(), Real(0.));
std::vector<Real> lgdsLeft;
std::transform(fractionalEL.begin(), fractionalEL.end(),
reminingNots.begin(), std::back_inserter(lgdsLeft),
boost::lambda::_1 * boost::lambda::_2 / notBskt);
return std::accumulate(lgdsLeft.begin(), lgdsLeft.end(), Real(0.))
/ bsktSize;
}
template< class LLM>
Disposable<std::vector<Real> >
BinomialLossModel<LLM>::lossPoints(const Date& d) const
{
std::vector<Real> notionals = basket_->remainingNotionals(d);
Real aveLossFrct = copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&BinomialLossModel<LLM>::averageLoss,
this,
boost::cref(d),
boost::cref(notionals),
_1)
)
);
std::vector<Real> data;
Size dataSize = basket_->remainingSize() + 1;
data.reserve(dataSize);
// use std::algorithm
Real outsNot = basket_->remainingNotional(d);
for(Size i=0; i<dataSize; i++)
data.push_back(i * aveLossFrct * outsNot);
return data;
}
template< class LLM>
Real BinomialLossModel<LLM>::condTrancheLoss(
const Date& d,
const std::vector<Real>& lossVals,
const std::vector<Real>& bsktNots,
const std::vector<Real>& uncondDefProbsInv,
const std::vector<Real>& mkf) const {
std::vector<Real> condLProb =
lossProbability(d, bsktNots, uncondDefProbsInv, mkf);
// \to do: move to a do-while over attach to detach
Real suma = 0.;
for(Size i=0; i<lossVals.size(); i++) {
suma += condLProb[i] *
std::min(std::max(lossVals[i]
- attachAmount_, 0.), detachAmount_ - attachAmount_);
}
return suma;
}
template< class LLM>
Real BinomialLossModel<LLM>::expectedTrancheLoss(const Date& d) const {
std::vector<Real> lossVals = lossPoints(d);
std::vector<Real> notionals = basket_->remainingNotionals(d);
std::vector<Probability> invProbs =
basket_->remainingProbabilities(d);
for(Size iName=0; iName<invProbs.size(); iName++)
invProbs[iName] =
copula_->inverseCumulativeY(invProbs[iName], iName);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(&BinomialLossModel<LLM>::condTrancheLoss,
this,
boost::cref(d),
boost::cref(lossVals),
boost::cref(notionals),
boost::cref(invProbs),
_1))
);
}
template< class LLM>
Disposable<std::map<Real, Probability> >
BinomialLossModel<LLM>::lossDistribution(const Date& d) const
{
std::map<Real, Probability> distrib;
std::vector<Real> lossPts = lossPoints(d);
std::vector<Real> values = expectedDistribution(d);
Real sum = 0.;
for(Size i=0; i<lossPts.size(); i++) {
distrib.insert(std::make_pair(lossPts[i],
//capped, some situations giving a very small probability over 1
std::min(sum+values[i],1.)
));
sum+= values[i];
}
return distrib;
}
template< class LLM>
Real BinomialLossModel<LLM>::percentile(const Date& d, Real perc) const {
std::map<Real, Probability> dist = lossDistribution(d);
// \todo: Use some of the library interpolators instead
if(// included in test below-> (dist.begin()->second >=1.) ||
(dist.begin()->second >= perc))return dist.begin()->first;
// deterministic case (e.g. date requested is todays date)
if(dist.size() == 1) return dist.begin()->first;
if(perc == 1.) return dist.rbegin()->first;
if(perc == 0.) return dist.begin()->first;
std::map<Real, Probability>::const_iterator itdist = dist.begin();
while(itdist->second <= perc) itdist++;
Real valPlus = itdist->second;
Real xPlus = itdist->first;
itdist--;//we r never 1st or last, because of tests above
Real valMin = itdist->second;
Real xMin = itdist->first;
Real portfLoss = xPlus-(xPlus-xMin)*(valPlus-perc)/(valPlus-valMin);
return
std::min(std::max(portfLoss - attachAmount_, 0.),
detachAmount_ - attachAmount_);
}
template< class LLM>
Real BinomialLossModel<LLM>::expectedShortfall(const Date&d,
Real perctl) const
{
//taken from recursive since we have the distribution in both cases.
if(d == Settings::instance().evaluationDate()) return 0.;
std::map<Real, Probability> distrib = lossDistribution(d);
std::map<Real, Probability>::iterator
itNxt, itDist = distrib.begin();
for(; itDist != distrib.end(); itDist++)
if(itDist->second >= perctl) break;
itNxt = itDist; itDist--;
// \todo: I could linearly triangulate the exact point and get
// extra precission on the first(broken) period.
if(itNxt != distrib.end()) {
Real lossNxt = std::min(std::max(itNxt->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
Real lossHere = std::min(std::max(itDist->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
Real val = lossNxt - (itNxt->second - perctl) *
(lossNxt - lossHere) / (itNxt->second - itDist->second);
Real suma = (itNxt->second - perctl) * (lossNxt + val) * .5;
itDist++;itNxt++;
do{
lossNxt = std::min(std::max(itNxt->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
lossHere = std::min(std::max(itDist->first - attachAmount_,
0.), detachAmount_ - attachAmount_);
suma += .5 * (lossHere + lossNxt)
* (itNxt->second - itDist->second);
itDist++;itNxt++;
}while(itNxt != distrib.end());
return suma / (1.-perctl);
}
QL_FAIL("Binomial model fails to calculate ESF.");
}
// The standard use:
typedef BinomialLossModel<GaussianConstantLossLM> GaussianBinomialLossModel;
typedef BinomialLossModel<TConstantLossLM> TBinomialLossModel;
}
#endif
|