/usr/include/ql/experimental/barrieroption/vannavolgainterpolation.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2013 Yue Tian
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file vannavolgainterpolation.hpp
\brief Vanna/Volga interpolation between discrete points
*/
#ifndef quantlib_vanna_volga_interpolation_hpp
#define quantlib_vanna_volga_interpolation_hpp
#include <ql/math/interpolation.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <boost/make_shared.hpp>
#include <vector>
namespace QuantLib {
namespace detail {
template<class I1, class I2> class VannaVolgaInterpolationImpl;
}
//! %Vanna Volga interpolation between discrete points
class VannaVolgaInterpolation : public Interpolation {
public:
/*! \pre the \f$ x \f$ values must be sorted. */
template <class I1, class I2>
VannaVolgaInterpolation(const I1& xBegin, const I1& xEnd,
const I2& yBegin,
Real spot,
DiscountFactor dDiscount,
DiscountFactor fDiscount,
Time T) {
impl_ = boost::make_shared<
detail::VannaVolgaInterpolationImpl<I1,I2> >(
xBegin, xEnd, yBegin,
spot, dDiscount, fDiscount, T);
impl_->update();
}
};
//! %VannaVolga-interpolation factory and traits
class VannaVolga {
public:
VannaVolga(Real spot,
DiscountFactor dDiscount,
DiscountFactor fDiscount,
Time T)
:spot_(spot), dDiscount_(dDiscount), fDiscount_(fDiscount), T_(T)
{}
template <class I1, class I2>
Interpolation interpolate(const I1& xBegin, const I1& xEnd,
const I2& yBegin) const {
return VannaVolgaInterpolation(xBegin, xEnd, yBegin, spot_, dDiscount_, fDiscount_, T_);
}
static const Size requiredPoints = 3;
private:
Real spot_;
DiscountFactor dDiscount_;
DiscountFactor fDiscount_;
Time T_;
};
namespace detail {
template <class I1, class I2>
class VannaVolgaInterpolationImpl
: public Interpolation::templateImpl<I1,I2> {
public:
VannaVolgaInterpolationImpl(const I1& xBegin, const I1& xEnd,
const I2& yBegin,
Real spot,
DiscountFactor dDiscount,
DiscountFactor fDiscount,
Time T)
: Interpolation::templateImpl<I1,I2>(xBegin, xEnd, yBegin,
VannaVolga::requiredPoints),
spot_(spot), dDiscount_(dDiscount), fDiscount_(fDiscount), T_(T) {
QL_REQUIRE(this->xEnd_-this->xBegin_ == 3,
"Vanna Volga Interpolator only interpolates 3 volatilities in strike space");
}
void update() {
//atmVol should be the second vol
atmVol_ = this->yBegin_[1];
fwd_ = spot_*fDiscount_/dDiscount_;
for(Size i = 0; i < 3; i++){
premiaBS.push_back(blackFormula(Option::Call, this->xBegin_[i], fwd_, atmVol_ * std::sqrt(T_), dDiscount_));
premiaMKT.push_back(blackFormula(Option::Call, this->xBegin_[i], fwd_, this->yBegin_[i] * std::sqrt(T_), dDiscount_));
vegas.push_back(vega(this->xBegin_[i]));
}
}
Real value(Real k) const {
Real x1 = vega(k)/vegas[0]
* (std::log(this->xBegin_[1]/k) * std::log(this->xBegin_[2]/k))
/ (std::log(this->xBegin_[1]/this->xBegin_[0]) * std::log(this->xBegin_[2]/this->xBegin_[0]));
Real x2 = vega(k)/vegas[1]
* (std::log(k/this->xBegin_[0]) * std::log(this->xBegin_[2]/k))
/ (std::log(this->xBegin_[1]/this->xBegin_[0]) * std::log(this->xBegin_[2]/this->xBegin_[1]));
Real x3 = vega(k)/vegas[2]
* (std::log(k/this->xBegin_[0]) * std::log(k/this->xBegin_[1]))
/ (std::log(this->xBegin_[2]/this->xBegin_[0]) * std::log(this->xBegin_[2]/this->xBegin_[1]));
Real cBS = blackFormula(Option::Call, k, fwd_, atmVol_ * std::sqrt(T_), dDiscount_);
Real c = cBS + x1*(premiaMKT[0] - premiaBS[0]) + x2*(premiaMKT[1] - premiaBS[1]) + x3*(premiaMKT[2] - premiaBS[2]);
Real std = blackFormulaImpliedStdDev(Option::Call, k, fwd_, c, dDiscount_);
return std / sqrt(T_);
}
Real primitive(Real) const {
QL_FAIL("Vanna Volga primitive not implemented");
}
Real derivative(Real) const {
QL_FAIL("Vanna Volga derivative not implemented");
}
Real secondDerivative(Real) const {
QL_FAIL("Vanna Volga secondDerivative not implemented");
}
private:
std::vector<Real> premiaBS;
std::vector<Real> premiaMKT;
std::vector<Real> vegas;
Real atmVol_;
Real spot_;
Real fwd_;
DiscountFactor dDiscount_;
DiscountFactor fDiscount_;
Time T_;
Real vega(Real k) const {
Real d1 = (std::log(fwd_/k) + 0.5 * std::pow(atmVol_, 2.0) * T_)/(atmVol_ * std::sqrt(T_));
NormalDistribution norm;
return spot_ * dDiscount_ * std::sqrt(T_) * norm(d1);
}
};
}
}
#endif
|