This file is indexed.

/usr/include/ql/experimental/barrieroption/vannavolgadoublebarrierengine.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2013 Yue Tian

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file vannavolgadoublebarrierengine.hpp
    \brief Vanna/Volga double-barrier option engine
*/

#ifndef quantlib_vanna_volga_double_barrier_engine_hpp
#define quantlib_vanna_volga_double_barrier_engine_hpp

#include <ql/processes/blackscholesprocess.hpp>
#include <ql/experimental/barrieroption/doublebarrieroption.hpp>
#include <ql/experimental/barrieroption/vannavolgainterpolation.hpp>
#include <ql/experimental/fx/deltavolquote.hpp>
#include <ql/experimental/fx/blackdeltacalculator.hpp>
#include <ql/pricingengines/barrier/analyticbarrierengine.hpp>
#include <ql/math/matrix.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/time/calendars/all.hpp>

namespace QuantLib {

    //! Vanna Volga double-barrier option engine

    /*!
        \ingroup barrierengines
    */
   template <class DoubleBarrierEngine>
      class VannaVolgaDoubleBarrierEngine
           : public GenericEngine<DoubleBarrierOption::arguments,
                                  DoubleBarrierOption::results> {
         public:
           // Constructor
             VannaVolgaDoubleBarrierEngine(
                   const Handle<DeltaVolQuote> atmVol,
                   const Handle<DeltaVolQuote> vol25Put,
                   const Handle<DeltaVolQuote> vol25Call,
                   const Handle<Quote> spotFX,
                   const Handle<YieldTermStructure> domesticTS,
                   const Handle<YieldTermStructure> foreignTS,
                   const bool adaptVanDelta = false,
                   const Real bsPriceWithSmile = 0.0,
                   int series = 5
                   )
             : GenericEngine<DoubleBarrierOption::arguments,
                             DoubleBarrierOption::results>(),
               atmVol_(atmVol), vol25Put_(vol25Put), vol25Call_(vol25Call), T_(atmVol_->maturity()),
               spotFX_(spotFX), domesticTS_(domesticTS), foreignTS_(foreignTS),
               adaptVanDelta_(adaptVanDelta), bsPriceWithSmile_(bsPriceWithSmile),
               series_(series){

                   QL_REQUIRE(vol25Put_->delta() == -0.25, "25 delta put is required by vanna volga method");
                   QL_REQUIRE(vol25Call_->delta() == 0.25, "25 delta call is required by vanna volga method");

                   QL_REQUIRE(vol25Put_->maturity() == vol25Call_->maturity() && vol25Put_->maturity() == atmVol_->maturity(),
                       "Maturity of 3 vols are not the same");

                   QL_REQUIRE(!domesticTS_.empty(), "domestic yield curve is not defined");
                   QL_REQUIRE(!foreignTS_.empty(), "foreign yield curve is not defined");

                   registerWith(atmVol_);
                   registerWith(vol25Put_);
                   registerWith(vol25Call_);
                   registerWith(spotFX_);
                   registerWith(domesticTS_);
                   registerWith(foreignTS_);
             }

           virtual void calculate() const {

               using std::sqrt;

               const Real sigmaShift_vega = 0.001;
               const Real sigmaShift_volga = 0.0001;
               const Real spotShift_delta = 0.0001 * spotFX_->value();
               const Real sigmaShift_vanna = 0.0001;

               QL_REQUIRE(arguments_.barrierType==DoubleBarrier::KnockIn || 
                          arguments_.barrierType==DoubleBarrier::KnockOut, 
                          "Only same type barrier supported");

               Handle<Quote> x0Quote(  //used for shift
                   boost::make_shared<SimpleQuote>(spotFX_->value()));
               Handle<Quote> atmVolQuote( //used for shift
                   boost::make_shared<SimpleQuote>(atmVol_->value()));

               boost::shared_ptr<BlackVolTermStructure> blackVolTS =
                   boost::make_shared<BlackConstantVol>(
                                     Settings::instance().evaluationDate(),
                                     NullCalendar(), atmVolQuote, Actual365Fixed());
               boost::shared_ptr<BlackScholesMertonProcess> stochProcess =
                   boost::make_shared<BlackScholesMertonProcess>(
                                       x0Quote,
                                       foreignTS_,
                                       domesticTS_,
                                       Handle<BlackVolTermStructure>(blackVolTS));

               boost::shared_ptr<PricingEngine> engineBS =
                   boost::make_shared<DoubleBarrierEngine>(stochProcess,
                                                                    series_);

               BlackDeltaCalculator blackDeltaCalculatorAtm(
                              Option::Call, atmVol_->deltaType(), x0Quote->value(),
                              domesticTS_->discount(T_), foreignTS_->discount(T_),
                              atmVol_->value() * sqrt(T_));
               Real atmStrike = blackDeltaCalculatorAtm.atmStrike(atmVol_->atmType());

               Real call25Vol = vol25Call_->value();
               Real put25Vol = vol25Put_->value();
               BlackDeltaCalculator blackDeltaCalculatorPut25(
                             Option::Put, vol25Put_->deltaType(), x0Quote->value(),
                             domesticTS_->discount(T_), foreignTS_->discount(T_),
                             put25Vol * sqrt(T_));
               Real put25Strike = blackDeltaCalculatorPut25.strikeFromDelta(-0.25);
               BlackDeltaCalculator blackDeltaCalculatorCall25(
                           Option::Call, vol25Call_->deltaType(), x0Quote->value(),
                           domesticTS_->discount(T_), foreignTS_->discount(T_),
                           call25Vol * sqrt(T_));
               Real call25Strike = blackDeltaCalculatorCall25.strikeFromDelta(0.25);

               //here use vanna volga interpolated smile to price vanilla
               std::vector<Real> strikes;
               std::vector<Real> vols;
               strikes.push_back(put25Strike);
               vols.push_back(put25Vol);
               strikes.push_back(atmStrike);
               vols.push_back(atmVol_->value());
               strikes.push_back(call25Strike);
               vols.push_back(call25Vol);
               VannaVolga vannaVolga(x0Quote->value(), foreignTS_->discount(T_), foreignTS_->discount(T_), T_);
               Interpolation interpolation = vannaVolga.interpolate(strikes.begin(), strikes.end(), vols.begin());
               interpolation.enableExtrapolation();
               const boost::shared_ptr<StrikedTypePayoff> payoff =
                  boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
               Real strikeVol = interpolation(payoff->strike());
               //vannila option price
               Real vanillaOption = blackFormula(payoff->optionType(), payoff->strike(),
                                            x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_),
                                            strikeVol * sqrt(T_),
                                            domesticTS_->discount(T_));

               //already out
               if((x0Quote->value() > arguments_.barrier_hi || x0Quote->value() < arguments_.barrier_lo)
                   && arguments_.barrierType == DoubleBarrier::KnockOut){
                       results_.value = 0.0;
                       results_.additionalResults["VanillaPrice"] = adaptVanDelta_? bsPriceWithSmile_ : vanillaOption;
                       results_.additionalResults["BarrierInPrice"] = adaptVanDelta_? bsPriceWithSmile_ : vanillaOption;
                       results_.additionalResults["BarrierOutPrice"] = 0.0;
               }
               //already in
               else if((x0Quote->value() > arguments_.barrier_hi || x0Quote->value() < arguments_.barrier_lo)
                        && arguments_.barrierType == DoubleBarrier::KnockIn){
                       results_.value = adaptVanDelta_? bsPriceWithSmile_ : vanillaOption;
                       results_.additionalResults["VanillaPrice"] = adaptVanDelta_? bsPriceWithSmile_ : vanillaOption;
                       results_.additionalResults["BarrierInPrice"] = adaptVanDelta_? bsPriceWithSmile_ : vanillaOption;
                       results_.additionalResults["BarrierOutPrice"] = 0.0;
               }
               else{

                       //set up BS barrier option pricing
                       //only calculate out barrier option price
                       // in barrier price = vanilla - out barrier
                       boost::shared_ptr<StrikedTypePayoff> payoff
                           = boost::static_pointer_cast<StrikedTypePayoff> (arguments_.payoff);
                       DoubleBarrierOption doubleBarrierOption(arguments_.barrierType,
                                                   arguments_.barrier_lo,
                                                   arguments_.barrier_hi,
                                                   arguments_.rebate,
                                                   payoff,
                                                   arguments_.exercise);

                       doubleBarrierOption.setPricingEngine(engineBS);

                       //BS price
                       Real priceBS = doubleBarrierOption.NPV();

                       Real priceAtmCallBS = blackFormula(Option::Call,atmStrike,
                                                    x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_), 
                                                    atmVol_->value() * sqrt(T_),
                                                    domesticTS_->discount(T_));
                       Real price25CallBS = blackFormula(Option::Call,call25Strike,
                                                    x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_), 
                                                    atmVol_->value() * sqrt(T_),
                                                    domesticTS_->discount(T_));
                       Real price25PutBS = blackFormula(Option::Put,put25Strike,
                                                    x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_),
                                                    atmVol_->value() * sqrt(T_),
                                                    domesticTS_->discount(T_));

                       //market price
                       Real priceAtmCallMkt = blackFormula(Option::Call,atmStrike,
                                                    x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_), 
                                                    atmVol_->value() * sqrt(T_),
                                                    domesticTS_->discount(T_));
                       Real price25CallMkt = blackFormula(Option::Call,call25Strike,
                                                    x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_), 
                                                    call25Vol * sqrt(T_),
                                                    domesticTS_->discount(T_));
                       Real price25PutMkt = blackFormula(Option::Put,put25Strike,
                                                    x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_),
                                                    put25Vol * sqrt(T_),
                                                    domesticTS_->discount(T_));

                        //Analytical Black Scholes formula
                       NormalDistribution norm;
                       Real d1atm = (std::log(x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_)/atmStrike) 
                                 + 0.5*std::pow(atmVolQuote->value(),2.0) * T_)/(atmVolQuote->value() * sqrt(T_));
                       Real vegaAtm_Analytical = x0Quote->value() * norm(d1atm) * sqrt(T_) * foreignTS_->discount(T_);
                       Real vannaAtm_Analytical = vegaAtm_Analytical/x0Quote->value() *(1.0 - d1atm/(atmVolQuote->value()*sqrt(T_)));
                       Real volgaAtm_Analytical = vegaAtm_Analytical * d1atm * (d1atm - atmVolQuote->value() * sqrt(T_))/atmVolQuote->value();

                       Real d125call = (std::log(x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_)/call25Strike) 
                                 + 0.5*std::pow(atmVolQuote->value(),2.0) * T_)/(atmVolQuote->value() * sqrt(T_));
                       Real vega25Call_Analytical = x0Quote->value() * norm(d125call) * sqrt(T_) * foreignTS_->discount(T_);
                       Real vanna25Call_Analytical = vega25Call_Analytical/x0Quote->value() *(1.0 - d125call/(atmVolQuote->value()*sqrt(T_)));
                       Real volga25Call_Analytical = vega25Call_Analytical * d125call * (d125call - atmVolQuote->value() * sqrt(T_))/atmVolQuote->value();

                       Real d125Put = (std::log(x0Quote->value()* foreignTS_->discount(T_)/ domesticTS_->discount(T_)/put25Strike) 
                                 + 0.5*std::pow(atmVolQuote->value(),2.0) * T_)/(atmVolQuote->value() * sqrt(T_));
                       Real vega25Put_Analytical = x0Quote->value() * norm(d125Put) * sqrt(T_) * foreignTS_->discount(T_);
                       Real vanna25Put_Analytical = vega25Put_Analytical/x0Quote->value() *(1.0 - d125Put/(atmVolQuote->value()*sqrt(T_)));
                       Real volga25Put_Analytical = vega25Put_Analytical * d125Put * (d125Put - atmVolQuote->value() * sqrt(T_))/atmVolQuote->value();


                       //BS vega
                       boost::static_pointer_cast<SimpleQuote> (atmVolQuote.currentLink())->setValue(atmVolQuote->value() + sigmaShift_vega);
                       doubleBarrierOption.recalculate();
                       Real vegaBarBS = (doubleBarrierOption.NPV() - priceBS)/sigmaShift_vega;
                       boost::static_pointer_cast<SimpleQuote> (atmVolQuote.currentLink())->setValue(atmVolQuote->value() - sigmaShift_vega);//setback

                       //BS volga

                       //vegaBar2
                       //base NPV
                       boost::static_pointer_cast<SimpleQuote> (atmVolQuote.currentLink())->setValue(atmVolQuote->value() + sigmaShift_volga);
                       doubleBarrierOption.recalculate();
                       Real priceBS2 = doubleBarrierOption.NPV();

                       //shifted npv
                       boost::static_pointer_cast<SimpleQuote> (atmVolQuote.currentLink())->setValue(atmVolQuote->value() + sigmaShift_vega);
                       doubleBarrierOption.recalculate();
                       Real vegaBarBS2 = (doubleBarrierOption.NPV() - priceBS2)/sigmaShift_vega;
                       Real volgaBarBS = (vegaBarBS2 - vegaBarBS)/sigmaShift_volga;
                       boost::static_pointer_cast<SimpleQuote> (atmVolQuote.currentLink())->setValue(atmVolQuote->value()
                                                                                                     - sigmaShift_volga 
                                                                                                     - sigmaShift_vega);//setback

                       //BS Delta
                       //base delta
                       boost::static_pointer_cast<SimpleQuote> (x0Quote.currentLink())->setValue(x0Quote->value() + spotShift_delta);//shift forth
                       doubleBarrierOption.recalculate();
                       Real priceBS_delta1 = doubleBarrierOption.NPV();

                       boost::static_pointer_cast<SimpleQuote> (x0Quote.currentLink())->setValue(x0Quote->value() - 2 * spotShift_delta);//shift back
                       doubleBarrierOption.recalculate();
                       Real priceBS_delta2 = doubleBarrierOption.NPV();

                       boost::static_pointer_cast<SimpleQuote> (x0Quote.currentLink())->setValue(x0Quote->value() +  spotShift_delta);//set back
                       Real deltaBar1 = (priceBS_delta1 - priceBS_delta2)/(2.0*spotShift_delta);

                       //shifted vanna
                       boost::static_pointer_cast<SimpleQuote> (atmVolQuote.currentLink())->setValue(atmVolQuote->value() + sigmaShift_vanna);//shift sigma
                       //shifted delta
                       boost::static_pointer_cast<SimpleQuote> (x0Quote.currentLink())->setValue(x0Quote->value() + spotShift_delta);//shift forth
                       doubleBarrierOption.recalculate();
                       priceBS_delta1 = doubleBarrierOption.NPV();

                       boost::static_pointer_cast<SimpleQuote> (x0Quote.currentLink())->setValue(x0Quote->value() - 2 * spotShift_delta);//shift back
                       doubleBarrierOption.recalculate();
                       priceBS_delta2 = doubleBarrierOption.NPV();

                       boost::static_pointer_cast<SimpleQuote> (x0Quote.currentLink())->setValue(x0Quote->value() +  spotShift_delta);//set back
                       Real deltaBar2 = (priceBS_delta1 - priceBS_delta2)/(2.0*spotShift_delta);

                       Real vannaBarBS = (deltaBar2 - deltaBar1)/sigmaShift_vanna;

                       boost::static_pointer_cast<SimpleQuote> (atmVolQuote.currentLink())->setValue(atmVolQuote->value() - sigmaShift_vanna);//set back

                       //Matrix
                       Matrix A(3,3,0.0);

                       //analytical
                       A[0][0] = vegaAtm_Analytical;
                       A[0][1] = vega25Call_Analytical;
                       A[0][2] = vega25Put_Analytical;
                       A[1][0] = vannaAtm_Analytical;
                       A[1][1] = vanna25Call_Analytical;
                       A[1][2] = vanna25Put_Analytical;
                       A[2][0] = volgaAtm_Analytical;
                       A[2][1] = volga25Call_Analytical;
                       A[2][2] = volga25Put_Analytical;

                       Array b(3,0.0);
                       b[0] = vegaBarBS;
                       b[1] = vannaBarBS;
                       b[2] = volgaBarBS;
                       Array q = inverse(A) * b;

                       Real H = arguments_.barrier_hi;
                       Real L = arguments_.barrier_lo;
                       Real theta_tilt_minus = ((domesticTS_->zeroRate(T_, Continuous) - foreignTS_->zeroRate(T_, Continuous))/atmVol_->value() - atmVol_->value()/2.0)*std::sqrt(T_);
                       Real h = 1.0/atmVol_->value() * std::log(H/x0Quote->value())/std::sqrt(T_);
                       Real l = 1.0/atmVol_->value() * std::log(L/x0Quote->value())/std::sqrt(T_);
                       CumulativeNormalDistribution cnd;

                       Real doubleNoTouch = 0.0;
                       for(int j = -series_; j< series_;j++ ){
                           Real e_minus = 2*j*(h-l) - theta_tilt_minus;
                           doubleNoTouch += std::exp(-2.0*j*theta_tilt_minus*(h-l))*(cnd(h+e_minus) - cnd(l+e_minus))
                                            - std::exp(-2.0*j*theta_tilt_minus*(h-l)+2.0*theta_tilt_minus*h)*(cnd(h-2.0*h+e_minus) - cnd(l-2.0*h+e_minus));
                       }

                       Real p_survival = doubleNoTouch;

                       Real lambda = p_survival ;
                       Real adjust = q[0]*(priceAtmCallMkt - priceAtmCallBS)
                                                + q[1]*(price25CallMkt - price25CallBS)
                                                + q[2]*(price25PutMkt - price25PutBS);
                       Real outPrice = priceBS + lambda*adjust;//
                       Real inPrice;

                       //adapt Vanilla delta
                       if(adaptVanDelta_ == true){
                           outPrice += lambda*(bsPriceWithSmile_ - vanillaOption);
                           //capfloored by (0, vanilla)
                           outPrice = std::max(0.0, std::min(bsPriceWithSmile_, outPrice));
                           inPrice = bsPriceWithSmile_ - outPrice;
                       }
                       else{
                           //capfloored by (0, vanilla)
                           outPrice = std::max(0.0, std::min(vanillaOption , outPrice));
                           inPrice = vanillaOption - outPrice;
                       }

                       if(arguments_.barrierType == DoubleBarrier::KnockOut)
                          results_.value = outPrice;
                       else
                          results_.value = inPrice;
                       results_.additionalResults["VanillaPrice"] = vanillaOption;
                       results_.additionalResults["BarrierInPrice"] = inPrice;
                       results_.additionalResults["BarrierOutPrice"] = outPrice;
                       results_.additionalResults["lambda"] = lambda;
               }
           }


         private:
           const Handle<DeltaVolQuote> atmVol_;
           const Handle<DeltaVolQuote> vol25Put_;
           const Handle<DeltaVolQuote> vol25Call_;
           const Time T_;
           const Handle<Quote> spotFX_;
           const Handle<YieldTermStructure> domesticTS_;
           const Handle<YieldTermStructure> foreignTS_;
           const bool adaptVanDelta_;
           const Real bsPriceWithSmile_;
           const int series_;
       };


}

#endif