This file is indexed.

/usr/include/Qca-qt5/QtCrypto/qca_publickey.h is in libqca-qt5-2-dev 2.1.1-4+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
/*
 * qca_publickey.h - Qt Cryptographic Architecture
 * Copyright (C) 2003-2007  Justin Karneges <justin@affinix.com>
 * Copyright (C) 2004,2005  Brad Hards <bradh@frogmouth.net>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301  USA
 *
 */

/**
   \file qca_publickey.h

   Header file for PublicKey and PrivateKey related classes

   \note You should not use this header directly from an
   application. You should just use <tt> \#include \<QtCrypto>
   </tt> instead.
*/

#ifndef QCA_PUBLICKEY_H
#define QCA_PUBLICKEY_H

#include <QObject>
#include "qca_core.h"

namespace QCA {

class PublicKey;
class PrivateKey;
class KeyGenerator;
class RSAPublicKey;
class RSAPrivateKey;
class DSAPublicKey;
class DSAPrivateKey;
class DHPublicKey;
class DHPrivateKey;

/**
   Encryption algorithms
*/
enum EncryptionAlgorithm
{
	EME_PKCS1v15,     ///< Block type 2 (PKCS#1, Version 1.5)
	EME_PKCS1_OAEP,   ///< Optimal asymmetric encryption padding (PKCS#1, Version 2.0)
	EME_PKCS1v15_SSL, ///< PKCS#1, Version 1.5 with an SSL-specific modification
	EME_NO_PADDING    ///< Raw RSA encryption
};

/**
   Signature algorithm variants

   Note that most signature algorithms follow a process of first hashing the
   plaintext data to be signed, creating a payload format that wraps the hash
   value (among other things), and then signing the payload with the private
   key.  So, for example, an EMSA3(SHA1) signature outputted by QCA cannot be
   verified by merely performing RSA and SHA1 operations (e.g.
   "openssl rsautl -verify" and comparing with sha1sum), because that would not
   take the EMSA3 payload format into consideration.
*/
enum SignatureAlgorithm
{
	SignatureUnknown, ///< Unknown signing algorithm
	EMSA1_SHA1,       ///< SHA1, with EMSA1 (IEEE1363-2000) encoding (this is the usual DSA algorithm - FIPS186)
	EMSA3_SHA1,       ///< SHA1, with EMSA3 (ie PKCS#1 Version 1.5) encoding
	EMSA3_MD5,        ///< MD5, with EMSA3 (ie PKCS#1 Version 1.5) encoding (this is the usual RSA algorithm)
	EMSA3_MD2,        ///< MD2, with EMSA3 (ie PKCS#1 Version 1.5) encoding
	EMSA3_RIPEMD160,  ///< RIPEMD160, with EMSA3 (ie PKCS#1 Version 1.5) encoding
	EMSA3_Raw,        ///< EMSA3 without computing a message digest or a DigestInfo encoding (identical to PKCS#11's CKM_RSA_PKCS mechanism)
	EMSA3_SHA224,     ///< SHA224, with EMSA3 (ie PKCS#1 Version 1.5) encoding
	EMSA3_SHA256,     ///< SHA256, with EMSA3 (ie PKCS#1 Version 1.5) encoding
	EMSA3_SHA384,     ///< SHA384, with EMSA3 (ie PKCS#1 Version 1.5) encoding
	EMSA3_SHA512      ///< SHA512, with EMSA3 (ie PKCS#1 Version 1.5) encoding
};

/**
   Signature formats (DSA only)
*/
enum SignatureFormat
{
	DefaultFormat, ///< For DSA, this is the same as IEEE_1363
	IEEE_1363,     ///< 40-byte format from IEEE 1363 (Botan/.NET)
	DERSequence    ///< Signature wrapped in DER formatting (OpenSSL/Java)
};

/**
   Password-based encryption
*/
enum PBEAlgorithm
{
	PBEDefault,           ///< Use modern default (same as PBES2_TripleDES_SHA1)
	PBES2_DES_SHA1,       ///< PKCS#5 v2.0 DES/CBC,SHA1
	PBES2_TripleDES_SHA1, ///< PKCS#5 v2.0 TripleDES/CBC,SHA1
	PBES2_AES128_SHA1,    ///< PKCS#5 v2.0 AES-128/CBC,SHA1
	PBES2_AES192_SHA1,    ///< PKCS#5 v2.0 AES-192/CBC,SHA1
	PBES2_AES256_SHA1     ///< PKCS#5 v2.0 AES-256/CBC,SHA1
};

/**
   Return value from a format conversion

   Note that if you are checking for any result other than ConvertGood,
   then you may be introducing a provider specific dependency.
*/
enum ConvertResult
{
	ConvertGood,      ///< Conversion succeeded, results should be valid
	ErrorDecode,      ///< General failure in the decode stage
	ErrorPassphrase,  ///< Failure because of incorrect passphrase
	ErrorFile         ///< Failure because of incorrect file
};

/**
   Well known discrete logarithm group sets

   These sets are derived from three main sources:
   Java Cryptographic Extensions, 
 <a href="http://www.ietf.org/rfc/rfc2412.txt">RFC2412</a> and
 <a href="http://www.ietf.org/rfc/rfc3526.txt">RFC3526</a>.
*/
enum DLGroupSet
{
	DSA_512,    ///< 512 bit group, for compatibility with JCE
	DSA_768,    ///< 768 bit group, for compatibility with JCE
	DSA_1024,   ///< 1024 bit group, for compatibility with JCE
	IETF_768,   ///< Group 1 from RFC 2412, Section E.1
	IETF_1024,  ///< Group 2 from RFC 2412, Section E.2
	IETF_1536,  ///< 1536-bit MODP Group ("group 5") from RFC3526 Section 2.
	IETF_2048,  ///< 2048-bit MODP Group ("group 14") from RFC3526 Section 3.
	IETF_3072,  ///< 3072-bit MODP Group ("group 15") from RFC3526 Section 4.
	IETF_4096,  ///< 4096-bit MODP Group ("group 16") from RFC3526 Section 5.
	IETF_6144,  ///< 6144-bit MODP Group ("group 17") from RFC3526 Section 6.
	IETF_8192  ///< 8192-bit MODP Group ("group 18") from RFC3526 Section 7.

};

/**
   Encode a hash result in EMSA3 (PKCS#1) format

   This is a convenience function for providers that only have access
   to raw RSA signing (mainly smartcard providers).  This is a built-in
   function of QCA and does not utilize a provider.  SHA1, MD5, MD2,
   and RIPEMD160 are supported.

   \param hashName the hash type used to create the digest
   \param digest the digest to encode in EMSA3 format
   \param size the desired size of the encoding output (-1 for automatic size)
*/
QCA_EXPORT QByteArray emsa3Encode(const QString &hashName, const QByteArray &digest, int size = -1);

/**
   \class DLGroup qca_publickey.h QtCrypto

   A discrete logarithm group

   \ingroup UserAPI
*/
class QCA_EXPORT DLGroup
{
public:
	DLGroup();

	/**
	   Construct a discrete logarithm group from raw parameters

	   \param p the P parameter
	   \param q the Q parameter
	   \param g the G parameter
	*/
	DLGroup(const BigInteger &p, const BigInteger &q, const BigInteger &g);

	/**
	   Construct a discrete logarithm group from raw parameters

	   \param p the P parameter
	   \param g the G parameter
	*/
	DLGroup(const BigInteger &p, const BigInteger &g);

	/**
	   Standard copy constructor

	   \param from the group to copy from
	*/
	DLGroup(const DLGroup &from);
	~DLGroup();

	/**
	   Standard assignment operator

	   \param from the DLGroup to copy from
	*/
	DLGroup & operator=(const DLGroup &from);

	/**
	   Provide a list of the supported group sets

	   \param provider the provider to report which group sets are
	   available. If not specified, all providers will be checked
	*/
	static QList<DLGroupSet> supportedGroupSets(const QString &provider = QString());

	/**
	   Test if the group is empty
	*/
	bool isNull() const;

	/**
	   Provide the p component of the group
	*/
	BigInteger p() const;

	/**
	   Provide the q component of the group
	*/
	BigInteger q() const;

	/**
	   Provide the g component of the group
	*/
	BigInteger g() const;

private:
	class Private;
	Private *d;
};

/**
   \class PKey qca_publickey.h QtCrypto

   General superclass for public (PublicKey) and private (PrivateKey) keys
   used with asymmetric encryption techniques.

   \ingroup UserAPI

*/
class QCA_EXPORT PKey : public Algorithm
{
public:
	/**
	   Types of public key cryptography keys supported by QCA
	*/
	enum Type {
		RSA, ///< RSA key
		DSA, ///< DSA key
		DH   ///< Diffie Hellman key
	};

	/**
	   Standard constructor
	*/
	PKey();

	/**
	   Standard copy constructor

	   \param from the key to copy from
	*/
	PKey(const PKey &from);

	~PKey();

	/**
	   Standard assignment operator

	   \param from the PKey to copy from
	*/
	PKey & operator=(const PKey &from);

	/**
	   Test what types of keys are supported.

	   Normally you would just test if the capability is present, however
	   for PKey, you also need to test which types of keys are available.
	   So if you want to figure out if RSA keys are supported, you need to
	   do something like:
	   \code
if(!QCA::isSupported("pkey") ||
	!QCA::PKey::supportedTypes().contains(QCA::PKey::RSA))
{
	// then there is no RSA key support
}
else
{
	// there is RSA key support
}
	   \endcode

	   To make things a bit more complex, supportedTypes() only
	   checks for basic functionality. If you want to check that 
	   you can do operations with PEM or DER (eg toPEM(), fromPEM(), and
	   the equivalent DER and PEMfile operations, plus anything else
	   that uses them, including the constructor form that takes a
	   fileName), then you need to check for supportedIOTypes() instead.

	   \param provider the name of the provider to use, if a particular 
	   provider is required.

	   \sa supportedIOTypes()
	*/
	static QList<Type> supportedTypes(const QString &provider = QString());

	/**
	   Test what types of keys are supported for IO operations

	   If you are using PKey DER or PEM operations, then you need
	   to check for appropriate support using this method. For example,
	   if you want to check if you can export or import an RSA key, then
	   you need to do something like:
	   \code
if(!QCA::isSupported("pkey") ||
	!QCA::PKey::supportedIOTypes().contains(QCA::PKey::RSA))
{
	// then there is no RSA key IO support
}
else
{
	// there is RSA key IO support
}
	   \endcode

	   Note that if you only want to check for basic functionality
	   (ie not PEM or DER import/export), then you can use
	   supportedTypes().  There is no need to use both - if the key type
	   is supported for IO, then is also supported for basic operations.

	   \param provider the name of the provider to use, if a particular 
	   provider is required.

	   \sa supportedTypes()
	*/
	static QList<Type> supportedIOTypes(const QString &provider = QString());

	/**
	   Test if the key is null (empty)

	   \return true if the key is null
	*/
	bool isNull() const;

	/**
	   Report the Type of key (eg RSA, DSA or Diffie Hellman)

	   \sa isRSA, isDSA and isDH for boolean tests.
	*/
	Type type() const;

	/**
	   Report the number of bits in the key
	*/
	int bitSize() const;

	/**
	   Test if the key is an RSA key
	*/
	bool isRSA() const;

	/**
	   Test if the key is a DSA key
	*/
	bool isDSA() const;

	/**
	   Test if the key is a Diffie Hellman key
	*/
	bool isDH() const;

	/**
	   Test if the key is a public key
	*/
	bool isPublic() const;	

	/**
	   Test if the key is a private key
	*/
	bool isPrivate() const;

	/**
	   Test if the key data can be exported.  If the key resides on a
	   smart card or other such device, this will likely return false.
	*/
	bool canExport() const;

	/**
	   Test if the key can be used for key agreement
	*/
	bool canKeyAgree() const;

	/**
	   Interpret this key as a PublicKey

	   \sa toRSAPublicKey(), toDSAPublicKey() and toDHPublicKey()
	   for protected forms of this call.
	*/
	PublicKey toPublicKey() const;

	/**
	   Interpret this key as a PrivateKey
	*/
	PrivateKey toPrivateKey() const;

	/**
	   test if two keys are equal

	   \param a the key to compare with this key
	*/
	bool operator==(const PKey &a) const;

	/**
	   test if two keys are not equal

	   \param a the key to compare with this key
	*/
	bool operator!=(const PKey &a) const;

protected:
	/**
	   Create a key of the specified type

	   \param type the name of the type of key to create
	   \param provider the name of the provider to create the key in
	*/
	PKey(const QString &type, const QString &provider);

	/**
	   Set the key

	   \param k the key to assign from
	*/
	void set(const PKey &k);

	/**
	   Interpret this key as an RSAPublicKey

	   \note This function is essentially a convenience cast - if the
	   key was created as a DSA key, this function cannot turn it into 
	   an RSA key.

	   \sa toPublicKey() for the public version of this method
	*/
	RSAPublicKey toRSAPublicKey() const;

	/**
	   Interpret this key as an  RSAPrivateKey

	   \note This function is essentially a convenience cast - if the
	   key was created as a DSA key, this function cannot turn it into 
	   a RSA key.

	   \sa toPrivateKey() for the public version of this method
	*/
	RSAPrivateKey toRSAPrivateKey() const;

	/**
	   Interpret this key as an DSAPublicKey

	   \note This function is essentially a convenience cast - if the
	   key was created as an RSA key, this function cannot turn it into 
	   a DSA key.

	   \sa toPublicKey() for the public version of this method
	*/
	DSAPublicKey toDSAPublicKey() const;

	/**
	   Interpret this key as a DSAPrivateKey

	   \note This function is essentially a convenience cast - if the
	   key was created as an RSA key, this function cannot turn it into 
	   a DSA key.

	   \sa toPrivateKey() for the public version of this method
	*/
	DSAPrivateKey toDSAPrivateKey() const;

	/**
	   Interpret this key as an DHPublicKey

	   \note This function is essentially a convenience cast - if the
	   key was created as a DSA key, this function cannot turn it into 
	   a DH key.

	   \sa toPublicKey() for the public version of this method
	*/
	DHPublicKey toDHPublicKey() const;

	/**
	   Interpret this key as a DHPrivateKey

	   \note This function is essentially a convenience cast - if the
	   key was created as a DSA key, this function cannot turn it into 
	   a DH key.

	   \sa toPrivateKey() for the public version of this method
	*/
	DHPrivateKey toDHPrivateKey() const;

private:
	void assignToPublic(PKey *dest) const;
	void assignToPrivate(PKey *dest) const;

	class Private;
	Private *d;
};

/**
   \class PublicKey qca_publickey.h QtCrypto

   Generic public key

   \ingroup UserAPI

*/
class QCA_EXPORT PublicKey : public PKey
{
public:
	/**
	   Create an empty (null) public key
	*/
	PublicKey();

	/**
	   Create a public key based on a specified private key

	   \param k the private key to extract the public key parts from
	*/
	PublicKey(const PrivateKey &k);

	/**
	   Import a public key from a PEM representation in a file

	   \param fileName the name of the file containing the public key

	   \sa fromPEMFile for an alternative method
	*/
	PublicKey(const QString &fileName);

	/**
	   Copy constructor

	   \param from the PublicKey to copy from
	*/
	PublicKey(const PublicKey &from);

	~PublicKey();

	/**
	   Assignment operator

	   \param from the PublicKey to copy from
	*/
	PublicKey & operator=(const PublicKey &from);

	/**
	   Convenience method to convert this key to an RSAPublicKey

	   Note that if the key is not an RSA key (eg it is DSA or DH),
	   then this will produce a null key.
	*/
	RSAPublicKey toRSA() const;

	/**
	   Convenience method to convert this key to a DSAPublicKey

	   Note that if the key is not an DSA key (eg it is RSA or DH),
	   then this will produce a null key.
	*/
	DSAPublicKey toDSA() const;

	/**
	   Convenience method to convert this key to a DHPublicKey

	   Note that if the key is not an DH key (eg it is DSA or RSA),
	   then this will produce a null key.
	*/
	DHPublicKey toDH() const;

	/**
	   Test if this key can be used for encryption

	   \return true if the key can be used for encryption
	*/
	bool canEncrypt() const;

	/**
	   Test if this key can be used for decryption

	   \return true if the key can be used for decryption
	*/
	bool canDecrypt() const;

	/**
	   Test if the key can be used for verifying signatures

	   \return true of the key can be used for verification
	*/
	bool canVerify() const;

	/**
	   The maximum message size that can be encrypted with a specified
	   algorithm

	   \param alg the algorithm to check
	*/
	int maximumEncryptSize(EncryptionAlgorithm alg) const;

	/**
	   Encrypt a message using a specified algorithm

	   \param a the message to encrypt
	   \param alg the algorithm to use
	*/
	SecureArray encrypt(const SecureArray &a, EncryptionAlgorithm alg);

	/**
	   Decrypt the message

	   \param in the cipher (encrypted) data
	   \param out the plain text data
	   \param alg the algorithm to use

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	bool decrypt(const SecureArray &in, SecureArray *out, EncryptionAlgorithm alg);

	/**
	   Initialise the signature verification process

	   \param alg the algorithm to use for signing
	   \param format the specific format to use, for DSA
	*/
	void startVerify(SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);

	/**
	   Update the signature verification process with more data

	   \param a the array containing the data that should be added to the signature
	*/
	void update(const MemoryRegion &a);

	/**
	   Check the signature is valid for the message

	   The process to check that a signature is correct is shown below:
	   \code
// note that pubkey is a PublicKey
if( pubkey.canVerify() )
{
	pubkey.startVerify( QCA::EMSA3_MD5 );
	pubkey.update( theMessage ); // might be called multiple times
	if ( pubkey.validSignature( theSignature ) )
	{
		// then signature is valid
	}
	else
	{
		// then signature is invalid
	}
}
	   \endcode

	   \param sig the signature to check 

	   \return true if the signature is correct
	*/
	bool validSignature(const QByteArray &sig);

	/**
	   Single step message verification

	   If you have the whole message to be verified, then this offers a
	   more convenient approach to verification.

	   \param a the message to check the signature on
	   \param sig the signature to be checked
	   \param alg the algorithm to use
	   \param format the signature format to use, for DSA

	   \return true if the signature is valid for the message
	*/
	bool verifyMessage(const MemoryRegion &a, const QByteArray &sig, SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);

	/**
	   Export the key in Distinguished Encoding Rules (DER) format
	*/
	QByteArray toDER() const;

	/**
	   Export the key in Privacy Enhanced Mail (PEM) format

	   \sa toPEMFile provides a convenient way to save the PEM encoded key
	   to a file
	   \sa fromPEM provides an inverse of toPEM, converting the PEM
	   encoded key back to a PublicKey
	*/
	QString toPEM() const;

	/**
	   Export the key in Privacy Enhanced Mail (PEM) to a file

	   \param fileName the name (and path, if necessary) of the file to
	   save the PEM encoded key to.

	   \sa toPEM for a version that exports to a QString, which may be
	   useful if you need to do more sophisticated handling
	   \sa fromPEMFile provides an inverse of toPEMFile, reading a PEM
	   encoded key from a file
	*/
	bool toPEMFile(const QString &fileName) const;

	/**
	   Import a key in Distinguished Encoding Rules (DER) format

	   This function takes a binary array, which is assumed to contain a
	   public key in DER encoding, and returns the key. Unless you don't
	   care whether the import succeeded, you should test the result, as
	   shown below.

	   \code
QCA::ConvertResult conversionResult;
QCA::PublicKey publicKey = QCA::PublicKey::fromDER(keyArray, &conversionResult);
if (! QCA::ConvertGood == conversionResult)
{
	std::cout << "Public key read failed" << std::endl;
}
	   \endcode

	   \param a the array containing a DER encoded key
	   \param result pointer to a variable, which returns whether the
	   conversion succeeded (ConvertGood) or not
	   \param provider the name of the provider to use for the import.
	*/
	static PublicKey fromDER(const QByteArray &a, ConvertResult *result = 0, const QString &provider = QString());

	/**
	   Import a key in Privacy Enhanced Mail (PEM) format

	   This function takes a string, which is assumed to contain a public
	   key in PEM encoding, and returns that key. Unless you don't care
	   whether the import succeeded, you should test the result, as shown
	   below.

	   \code
QCA::ConvertResult conversionResult;
QCA::PublicKey publicKey = QCA::PublicKey::fromPEM(keyAsString, &conversionResult);
if (! QCA::ConvertGood == conversionResult)
{
	std::cout << "Public key read failed" << std::endl;
}
	   \endcode

	   \param s the string containing a PEM encoded key
	   \param result pointer to a variable, which returns whether the
	   conversion succeeded (ConvertGood) or not
	   \param provider the name of the provider to use for the import.

	   \sa toPEM, which provides an inverse of fromPEM()
	   \sa fromPEMFile, which provides an import direct from a file.
	*/
	static PublicKey fromPEM(const QString &s, ConvertResult *result = 0, const QString &provider = QString());

	/**
	   Import a key in Privacy Enhanced Mail (PEM) format from a file

	   This function takes the name of a file, which is assumed to contain
	   a public key in PEM encoding, and returns that key. Unless you
	   don't care whether the import succeeded, you should test the
	   result, as shown below.

	   \code
QCA::ConvertResult conversionResult;
QCA::PublicKey publicKey = QCA::PublicKey::fromPEMFile(fileName, &conversionResult);
if (! QCA::ConvertGood == conversionResult)
{
	std::cout << "Public key read failed" << std::endl;
}
	   \endcode

	   \param fileName a string containing the name of the file
	   \param result pointer to a variable, which returns whether the
	   conversion succeeded (ConvertGood) or not
	   \param provider the name of the provider to use for the import.

	   \sa toPEMFile, which provides an inverse of fromPEMFile()
	   \sa fromPEM, which provides an import from a string

	   \note there is also a constructor form that can import from a file
	*/
	static PublicKey fromPEMFile(const QString &fileName, ConvertResult *result = 0, const QString &provider = QString());

protected:
	/**
	   Create a new key of a specified type

	   \param type the type of key to create
	   \param provider the provider to use, if required
	*/
	PublicKey(const QString &type, const QString &provider);

private:
	class Private;
	Private *d;
};

/**
   \class PrivateKey qca_publickey.h QtCrypto

   Generic private key

   \ingroup UserAPI

*/
class QCA_EXPORT PrivateKey : public PKey
{
public:
	/**
	   Create an empty private key
	*/
	PrivateKey();

	/**
	   Import a private key from a PEM representation in a file

	   \param fileName the name of the file containing the private key
	   \param passphrase the pass phrase for the private key

	   \sa fromPEMFile for an alternative method

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	explicit PrivateKey(const QString &fileName, const SecureArray &passphrase = SecureArray());

	/**
	   Copy constructor

	   \param from the PrivateKey to copy from
	*/
	PrivateKey(const PrivateKey &from);

	~PrivateKey();

	/**
	   Assignment operator

	   \param from the PrivateKey to copy from
	*/
	PrivateKey & operator=(const PrivateKey &from);

	/**
	   Interpret / convert the key to an RSA key
	*/
	RSAPrivateKey toRSA() const;

	/**
	   Interpret / convert the key to a DSA key
	*/
	DSAPrivateKey toDSA() const;

	/**
	   Interpret / convert the key to a Diffie-Hellman key
	*/
	DHPrivateKey toDH() const;

	/**
	   Test if this key can be used for decryption

	   \return true if the key can be used for decryption
	*/
	bool canDecrypt() const;

	/**
	   Test if this key can be used for encryption

	   \return true if the key can be used for encryption
	*/
	bool canEncrypt() const;

	/**
	   Test if this key can be used for signing

	   \return true if the key can be used to make a signature
	*/
	bool canSign() const;

	/**
	   The maximum message size that can be encrypted with a specified
	   algorithm

	   \param alg the algorithm to check
	*/
	int maximumEncryptSize(EncryptionAlgorithm alg) const;

	/**
	   Decrypt the message

	   \param in the cipher (encrypted) data
	   \param out the plain text data
	   \param alg the algorithm to use

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	bool decrypt(const SecureArray &in, SecureArray *out, EncryptionAlgorithm alg);

	/**
	   Encrypt a message using a specified algorithm

	   \param a the message to encrypt
	   \param alg the algorithm to use
	*/
	SecureArray encrypt(const SecureArray &a, EncryptionAlgorithm alg);

	/**
	   Initialise the message signature process

	   \param alg the algorithm to use for the message signature process
	   \param format the signature format to use, for DSA

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	void startSign(SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);

	/**
	   Update the signature process

	   \param a the message to use to update the signature

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	void update(const MemoryRegion &a);

	/**
	   The resulting signature

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	QByteArray signature();

	/**
	   One step signature process

	   \param a the message to sign
	   \param alg the algorithm to use for the signature
	   \param format the signature format to use, for DSA

	   \return the signature

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	QByteArray signMessage(const MemoryRegion &a, SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);

	/**
	   Derive a shared secret key from a public key

	   \param theirs the public key to derive from
	*/
	SymmetricKey deriveKey(const PublicKey &theirs);

	/**
	   List the supported Password Based Encryption Algorithms that can be
	   used to protect the key.

	   \param provider the provider to use, if a particular provider is
	   required
	*/
	static QList<PBEAlgorithm> supportedPBEAlgorithms(const QString &provider = QString());

	/**
	   Export the key in Distinguished Encoding Rules (DER) format

	   \param passphrase the pass phrase to use to protect the key
	   \param pbe the symmetric encryption algorithm to use to protect the
	   key

	   \sa fromDER provides an inverse of toDER, converting the DER
	   encoded key back to a PrivateKey
	*/
	SecureArray toDER(const SecureArray &passphrase = SecureArray(), PBEAlgorithm pbe = PBEDefault) const;

	/**
	   Export the key in Privacy Enhanced Mail (PEM) format

	   \param passphrase the pass phrase to use to protect the key
	   \param pbe the symmetric encryption algorithm to use to protect the
	   key

	   \sa toPEMFile provides a convenient way to save the PEM encoded key
	   to a file
	   \sa fromPEM provides an inverse of toPEM, converting the PEM
	   encoded key back to a PrivateKey
	*/
	QString toPEM(const SecureArray &passphrase = SecureArray(), PBEAlgorithm pbe = PBEDefault) const;

	/**
	   Export the key in Privacy Enhanced Mail (PEM) format to a file

	   \param fileName the name (and path, if required) that the key
	   should be exported to.
	   \param passphrase the pass phrase to use to protect the key
	   \param pbe the symmetric encryption algorithm to use to protect the
	   key

	   \return true if the export succeeds

	   \sa toPEM provides a convenient way to save the PEM encoded key to
	   a file
	   \sa fromPEM provides an inverse of toPEM, converting the PEM
	   encoded key back to a PrivateKey
	*/
	bool toPEMFile(const QString &fileName, const SecureArray &passphrase = SecureArray(), PBEAlgorithm pbe = PBEDefault) const;

	/**
	   Import the key from Distinguished Encoding Rules (DER) format

	   \param a the array containing the DER representation of the key
	   \param passphrase the pass phrase that is used to protect the key
	   \param result a pointer to a ConvertResult, that if specified, will
	   be set to reflect the result of the import
	   \param provider the provider to use, if a particular provider is
	   required

	   \sa toDER provides an inverse of fromDER, exporting the key to an
	   array

	   \sa QCA::KeyLoader for an asynchronous loader approach.

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	static PrivateKey fromDER(const SecureArray &a, const SecureArray &passphrase = SecureArray(), ConvertResult *result = 0, const QString &provider = QString());

	/**
	   Import the key from Privacy Enhanced Mail (PEM) format

	   \param s the string containing the PEM representation of the key
	   \param passphrase the pass phrase that is used to protect the key
	   \param result a pointer to a ConvertResult, that if specified, will
	   be set to reflect the result of the import
	   \param provider the provider to use, if a particular provider is
	   required

	   \sa toPEM provides an inverse of fromPEM, exporting the key to a
	   string in PEM encoding.

	   \sa QCA::KeyLoader for an asynchronous loader approach.

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	static PrivateKey fromPEM(const QString &s, const SecureArray &passphrase = SecureArray(), ConvertResult *result = 0, const QString &provider = QString());

	/**
	   Import the key in Privacy Enhanced Mail (PEM) format from a file

	   \param fileName the name (and path, if required) of the file
	   containing the PEM representation of the key
	   \param passphrase the pass phrase that is used to protect the key
	   \param result a pointer to a ConvertResult, that if specified, will
	   be set to reflect the result of the import
	   \param provider the provider to use, if a particular provider is
	   required

	   \sa toPEMFile provides an inverse of fromPEMFile
	   \sa fromPEM which allows import from a string

	   \sa QCA::KeyLoader for an asynchronous loader approach.

	   \note there is also a constructor form, that allows you to create
	   the key directly

	   \note This synchronous operation may require event handling, and so
	   it must not be called from the same thread as an EventHandler.
	*/
	static PrivateKey fromPEMFile(const QString &fileName, const SecureArray &passphrase = SecureArray(), ConvertResult *result = 0, const QString &provider = QString());

protected:
	/**
	   Create a new private key

	   \param type the type of key to create
	   \param provider the provider to use, if a specific provider is
	   required.
	*/
	PrivateKey(const QString &type, const QString &provider);

private:
	class Private;
	Private *d;
};

/**
   \class KeyGenerator qca_publickey.h QtCrypto

   Class for generating asymmetric key pairs

   This class is used for generating asymmetric keys (public/private key
   pairs).

   \ingroup UserAPI

*/
class QCA_EXPORT KeyGenerator : public QObject
{
	Q_OBJECT
public:
	/**
	   Create a new key generator

	   \param parent the parent object, if applicable
	*/
	KeyGenerator(QObject *parent = 0);

	~KeyGenerator();

	/**
	   Test whether the key generator is set to operate in blocking mode,
	   or not

	   \return true if the key generator is in blocking mode

	   \sa setBlockingEnabled
	*/
	bool blockingEnabled() const;

	/**
	   Set whether the key generator is in blocking mode, nor not

	   \param b if true, the key generator will be set to operate in
	   blocking mode, otherwise it will operate in non-blocking mode

	   \sa blockingEnabled()
	*/
	void setBlockingEnabled(bool b);

	/**
	   Test if the key generator is currently busy, or not

	   \return true if the key generator is busy generating a key already
	*/
	bool isBusy() const;

	/**
	   Generate an RSA key of the specified length

	   This method creates both the public key and corresponding private
	   key. You almost certainly want to extract the public key part out -
	   see PKey::toPublicKey for an easy way.

	   Key length is a tricky judgment - using less than 2048 is probably
	   being too liberal for long term use. Don't use less than 1024
	   without serious analysis.

	   \param bits the length of key that is required
	   \param exp the exponent - typically 3, 17 or 65537
	   \param provider the name of the provider to use, if a particular
	   provider is required
	*/
	PrivateKey createRSA(int bits, int exp = 65537, const QString &provider = QString());

	/**
	   Generate a DSA key

	   This method creates both the public key and corresponding private
	   key. You almost certainly want to extract the public key part out -
	   see PKey::toPublicKey for an easy way.

	   \param domain the discrete logarithm group that this key should be
	   generated from
	   \param provider the name of the provider to use, if a particular
	   provider is required

	   \note Not every DLGroup makes sense for DSA. You should use one of
	   DSA_512, DSA_768 and DSA_1024.
	*/
	PrivateKey createDSA(const DLGroup &domain, const QString &provider = QString());

	/**
	   Generate a Diffie-Hellman key

	   This method creates both the public key and corresponding private
	   key. You almost certainly want to extract the public key part out -
	   see PKey::toPublicKey for an easy way.

	   \param domain the discrete logarithm group that this key should be
	   generated from
	   \param provider the name of the provider to use, if a particular
	   provider is required
	   \note For compatibility, you should use one of the IETF_ groupsets
	   as the domain argument.
	*/
	PrivateKey createDH(const DLGroup &domain, const QString &provider = QString());

	/**
	   Return the last generated key

	   This is really only useful when you are working with non-blocking
	   key generation
	*/
	PrivateKey key() const;

	/**
	   Create a new discrete logarithm group

	   \param set the set of discrete logarithm parameters to generate
	   from
	   \param provider the name of the provider to use, if a particular
	   provider is required.
	*/
	DLGroup createDLGroup(QCA::DLGroupSet set, const QString &provider = QString());

	/**
	   The current discrete logarithm group 
	*/
	DLGroup dlGroup() const;

Q_SIGNALS:
	/**
	   Emitted when the key generation is complete.

	   This is only used in non-blocking mode
	*/
	void finished();

private:
	Q_DISABLE_COPY(KeyGenerator)

	class Private;
	friend class Private;
	Private *d;
};

/**
   \class RSAPublicKey qca_publickey.h QtCrypto

   RSA Public Key

   \ingroup UserAPI

*/
class QCA_EXPORT RSAPublicKey : public PublicKey
{
public:
	/**
	   Generate an empty RSA public key
	*/
	RSAPublicKey();

	/**
	   Generate an RSA public key from specified parameters

	   \param n the public key value
	   \param e the public key exponent
	   \param provider the provider to use, if a particular provider is
	   required
	*/
	RSAPublicKey(const BigInteger &n, const BigInteger &e, const QString &provider = QString());

	/**
	   Extract the public key components from an RSA private key

	   \param k the private key to use as the basis for the public key
	*/
	RSAPublicKey(const RSAPrivateKey &k);

	/**
	   The public key value

	   This value is the actual public key value (the product of p and q,
	   the random prime numbers used to generate the RSA key), also known
	   as the public modulus.
	*/
	BigInteger n() const;

	/**
	   The public key exponent

	   This value is the exponent chosen in the original key generator
	   step
	*/
	BigInteger e() const;
};

/**
   \class RSAPrivateKey qca_publickey.h QtCrypto

   RSA Private Key

   \ingroup UserAPI

*/
class QCA_EXPORT RSAPrivateKey : public PrivateKey
{
public:
	/**
	   Generate an empty RSA private key
	*/
	RSAPrivateKey();

	/**
	   Generate an RSA private key from specified parameters

	   \param n the public key value
	   \param e the public key exponent
	   \param p one of the two chosen primes
	   \param q the other of the two chosen primes
	   \param d inverse of the exponent, modulo (p-1)(q-1)
	   \param provider the provider to use, if a particular provider is
	   required
	*/
	RSAPrivateKey(const BigInteger &n, const BigInteger &e, const BigInteger &p, const BigInteger &q, const BigInteger &d, const QString &provider = QString());

	/**
	   The public key value

	   This value is the actual public key value (the product of p and q,
	   the random prime numbers used to generate the RSA key), also known
	   as the public modulus.
	*/
	BigInteger n() const;

	/**
	   The public key exponent

	   This value is the exponent chosen in the original key generator
	   step
	*/
	BigInteger e() const;

	/**
	   One of the two random primes used to generate the private key
	*/
	BigInteger p() const;

	/**
	   The second of the two random primes used to generate the private
	   key
	*/
	BigInteger q() const;

	/**
	   The inverse of the exponent, module (p-1)(q-1)
	*/
	BigInteger d() const;
};

/**
   \class DSAPublicKey qca_publickey.h QtCrypto

   Digital Signature %Algorithm Public Key

   \ingroup UserAPI

*/
class QCA_EXPORT DSAPublicKey : public PublicKey
{
public:
	/**
	   Create an empty DSA public key
	*/
	DSAPublicKey();

	/**
	   Create a DSA public key

	   \param domain the discrete logarithm group to use
	   \param y the public random value
	   \param provider the provider to use, if a specific provider is
	   required
	*/
	DSAPublicKey(const DLGroup &domain, const BigInteger &y, const QString &provider = QString());

	/**
	   Create a DSA public key from a specified private key

	   \param k the DSA private key to use as the source
	*/
	DSAPublicKey(const DSAPrivateKey &k);

	/**
	   The discrete logarithm group that is being used
	*/
	DLGroup domain() const;

	/**
	   The public random value associated with this key
	*/
	BigInteger y() const;
};

/**
   \class DSAPrivateKey qca_publickey.h QtCrypto

   Digital Signature %Algorithm Private Key

   \ingroup UserAPI

*/
class QCA_EXPORT DSAPrivateKey : public PrivateKey
{
public:
	/**
	   Create an empty DSA private key
	*/
	DSAPrivateKey();

	/**
	   Create a DSA public key

	   \param domain the discrete logarithm group to use
	   \param y the public random value
	   \param x the private random value
	   \param provider the provider to use, if a specific provider is
	   required
	*/
	DSAPrivateKey(const DLGroup &domain, const BigInteger &y, const BigInteger &x, const QString &provider = QString());

	/**
	   The discrete logarithm group that is being used
	*/
	DLGroup domain() const;

	/**
	   the public random value
	*/
	BigInteger y() const;

	/**
	   the private random value
	*/
	BigInteger x() const;
};

/**
   \class DHPublicKey qca_publickey.h QtCrypto

   Diffie-Hellman Public Key

   \ingroup UserAPI

*/
class QCA_EXPORT DHPublicKey : public PublicKey
{
public:
	/**
	    Create an empty Diffie-Hellman public key
	*/
	DHPublicKey();

	/**
	   Create a Diffie-Hellman public key

	   \param domain the discrete logarithm group to use
	   \param y the public random value
	   \param provider the provider to use, if a specific provider is
	   required
	*/
	DHPublicKey(const DLGroup &domain, const BigInteger &y, const QString &provider = QString());

	/**
	   Create a Diffie-Hellman public key from a specified private key

	   \param k the Diffie-Hellman private key to use as the source
	*/
	DHPublicKey(const DHPrivateKey &k);

	/**
	   The discrete logarithm group that is being used
	*/
	DLGroup domain() const;

	/**
	   The public random value associated with this key
	*/
	BigInteger y() const;
};

/**
   \class DHPrivateKey qca_publickey.h QtCrypto

   Diffie-Hellman Private Key

   \ingroup UserAPI

*/
class QCA_EXPORT DHPrivateKey : public PrivateKey
{
public:
	/**
	   Create an empty Diffie-Hellman private key
	*/
	DHPrivateKey();

	/**
	   Create a Diffie-Hellman private key

	   \param domain the discrete logarithm group to use
	   \param y the public random value
	   \param x the private random value
	   \param provider the provider to use, if a particular provider is
	   required
	*/
	DHPrivateKey(const DLGroup &domain, const BigInteger &y, const BigInteger &x, const QString &provider = QString());

	/**
	   The discrete logarithm group that is being used
	*/
	DLGroup domain() const;

	/**
	   The public random value associated with this key
	*/
	BigInteger y() const;

	/**
	   The private random value associated with this key
	*/
	BigInteger x() const;
};
/*@}*/
}

#endif