/usr/lib/python2.7/lib2to3/pytree.py is in libpython2.7-stdlib 2.7.13-2+deb9u3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | # Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""
Python parse tree definitions.
This is a very concrete parse tree; we need to keep every token and
even the comments and whitespace between tokens.
There's also a pattern matching implementation here.
"""
__author__ = "Guido van Rossum <guido@python.org>"
import sys
import warnings
from StringIO import StringIO
HUGE = 0x7FFFFFFF # maximum repeat count, default max
_type_reprs = {}
def type_repr(type_num):
global _type_reprs
if not _type_reprs:
from .pygram import python_symbols
# printing tokens is possible but not as useful
# from .pgen2 import token // token.__dict__.items():
for name, val in python_symbols.__dict__.items():
if type(val) == int: _type_reprs[val] = name
return _type_reprs.setdefault(type_num, type_num)
class Base(object):
"""
Abstract base class for Node and Leaf.
This provides some default functionality and boilerplate using the
template pattern.
A node may be a subnode of at most one parent.
"""
# Default values for instance variables
type = None # int: token number (< 256) or symbol number (>= 256)
parent = None # Parent node pointer, or None
children = () # Tuple of subnodes
was_changed = False
was_checked = False
def __new__(cls, *args, **kwds):
"""Constructor that prevents Base from being instantiated."""
assert cls is not Base, "Cannot instantiate Base"
return object.__new__(cls)
def __eq__(self, other):
"""
Compare two nodes for equality.
This calls the method _eq().
"""
if self.__class__ is not other.__class__:
return NotImplemented
return self._eq(other)
__hash__ = None # For Py3 compatibility.
def __ne__(self, other):
"""
Compare two nodes for inequality.
This calls the method _eq().
"""
if self.__class__ is not other.__class__:
return NotImplemented
return not self._eq(other)
def _eq(self, other):
"""
Compare two nodes for equality.
This is called by __eq__ and __ne__. It is only called if the two nodes
have the same type. This must be implemented by the concrete subclass.
Nodes should be considered equal if they have the same structure,
ignoring the prefix string and other context information.
"""
raise NotImplementedError
def clone(self):
"""
Return a cloned (deep) copy of self.
This must be implemented by the concrete subclass.
"""
raise NotImplementedError
def post_order(self):
"""
Return a post-order iterator for the tree.
This must be implemented by the concrete subclass.
"""
raise NotImplementedError
def pre_order(self):
"""
Return a pre-order iterator for the tree.
This must be implemented by the concrete subclass.
"""
raise NotImplementedError
def set_prefix(self, prefix):
"""
Set the prefix for the node (see Leaf class).
DEPRECATED; use the prefix property directly.
"""
warnings.warn("set_prefix() is deprecated; use the prefix property",
DeprecationWarning, stacklevel=2)
self.prefix = prefix
def get_prefix(self):
"""
Return the prefix for the node (see Leaf class).
DEPRECATED; use the prefix property directly.
"""
warnings.warn("get_prefix() is deprecated; use the prefix property",
DeprecationWarning, stacklevel=2)
return self.prefix
def replace(self, new):
"""Replace this node with a new one in the parent."""
assert self.parent is not None, str(self)
assert new is not None
if not isinstance(new, list):
new = [new]
l_children = []
found = False
for ch in self.parent.children:
if ch is self:
assert not found, (self.parent.children, self, new)
if new is not None:
l_children.extend(new)
found = True
else:
l_children.append(ch)
assert found, (self.children, self, new)
self.parent.changed()
self.parent.children = l_children
for x in new:
x.parent = self.parent
self.parent = None
def get_lineno(self):
"""Return the line number which generated the invocant node."""
node = self
while not isinstance(node, Leaf):
if not node.children:
return
node = node.children[0]
return node.lineno
def changed(self):
if self.parent:
self.parent.changed()
self.was_changed = True
def remove(self):
"""
Remove the node from the tree. Returns the position of the node in its
parent's children before it was removed.
"""
if self.parent:
for i, node in enumerate(self.parent.children):
if node is self:
self.parent.changed()
del self.parent.children[i]
self.parent = None
return i
@property
def next_sibling(self):
"""
The node immediately following the invocant in their parent's children
list. If the invocant does not have a next sibling, it is None
"""
if self.parent is None:
return None
# Can't use index(); we need to test by identity
for i, child in enumerate(self.parent.children):
if child is self:
try:
return self.parent.children[i+1]
except IndexError:
return None
@property
def prev_sibling(self):
"""
The node immediately preceding the invocant in their parent's children
list. If the invocant does not have a previous sibling, it is None.
"""
if self.parent is None:
return None
# Can't use index(); we need to test by identity
for i, child in enumerate(self.parent.children):
if child is self:
if i == 0:
return None
return self.parent.children[i-1]
def leaves(self):
for child in self.children:
for x in child.leaves():
yield x
def depth(self):
if self.parent is None:
return 0
return 1 + self.parent.depth()
def get_suffix(self):
"""
Return the string immediately following the invocant node. This is
effectively equivalent to node.next_sibling.prefix
"""
next_sib = self.next_sibling
if next_sib is None:
return u""
return next_sib.prefix
if sys.version_info < (3, 0):
def __str__(self):
return unicode(self).encode("ascii")
class Node(Base):
"""Concrete implementation for interior nodes."""
def __init__(self,type, children,
context=None,
prefix=None,
fixers_applied=None):
"""
Initializer.
Takes a type constant (a symbol number >= 256), a sequence of
child nodes, and an optional context keyword argument.
As a side effect, the parent pointers of the children are updated.
"""
assert type >= 256, type
self.type = type
self.children = list(children)
for ch in self.children:
assert ch.parent is None, repr(ch)
ch.parent = self
if prefix is not None:
self.prefix = prefix
if fixers_applied:
self.fixers_applied = fixers_applied[:]
else:
self.fixers_applied = None
def __repr__(self):
"""Return a canonical string representation."""
return "%s(%s, %r)" % (self.__class__.__name__,
type_repr(self.type),
self.children)
def __unicode__(self):
"""
Return a pretty string representation.
This reproduces the input source exactly.
"""
return u"".join(map(unicode, self.children))
if sys.version_info > (3, 0):
__str__ = __unicode__
def _eq(self, other):
"""Compare two nodes for equality."""
return (self.type, self.children) == (other.type, other.children)
def clone(self):
"""Return a cloned (deep) copy of self."""
return Node(self.type, [ch.clone() for ch in self.children],
fixers_applied=self.fixers_applied)
def post_order(self):
"""Return a post-order iterator for the tree."""
for child in self.children:
for node in child.post_order():
yield node
yield self
def pre_order(self):
"""Return a pre-order iterator for the tree."""
yield self
for child in self.children:
for node in child.pre_order():
yield node
def _prefix_getter(self):
"""
The whitespace and comments preceding this node in the input.
"""
if not self.children:
return ""
return self.children[0].prefix
def _prefix_setter(self, prefix):
if self.children:
self.children[0].prefix = prefix
prefix = property(_prefix_getter, _prefix_setter)
def set_child(self, i, child):
"""
Equivalent to 'node.children[i] = child'. This method also sets the
child's parent attribute appropriately.
"""
child.parent = self
self.children[i].parent = None
self.children[i] = child
self.changed()
def insert_child(self, i, child):
"""
Equivalent to 'node.children.insert(i, child)'. This method also sets
the child's parent attribute appropriately.
"""
child.parent = self
self.children.insert(i, child)
self.changed()
def append_child(self, child):
"""
Equivalent to 'node.children.append(child)'. This method also sets the
child's parent attribute appropriately.
"""
child.parent = self
self.children.append(child)
self.changed()
class Leaf(Base):
"""Concrete implementation for leaf nodes."""
# Default values for instance variables
_prefix = "" # Whitespace and comments preceding this token in the input
lineno = 0 # Line where this token starts in the input
column = 0 # Column where this token tarts in the input
def __init__(self, type, value,
context=None,
prefix=None,
fixers_applied=[]):
"""
Initializer.
Takes a type constant (a token number < 256), a string value, and an
optional context keyword argument.
"""
assert 0 <= type < 256, type
if context is not None:
self._prefix, (self.lineno, self.column) = context
self.type = type
self.value = value
if prefix is not None:
self._prefix = prefix
self.fixers_applied = fixers_applied[:]
def __repr__(self):
"""Return a canonical string representation."""
return "%s(%r, %r)" % (self.__class__.__name__,
self.type,
self.value)
def __unicode__(self):
"""
Return a pretty string representation.
This reproduces the input source exactly.
"""
return self.prefix + unicode(self.value)
if sys.version_info > (3, 0):
__str__ = __unicode__
def _eq(self, other):
"""Compare two nodes for equality."""
return (self.type, self.value) == (other.type, other.value)
def clone(self):
"""Return a cloned (deep) copy of self."""
return Leaf(self.type, self.value,
(self.prefix, (self.lineno, self.column)),
fixers_applied=self.fixers_applied)
def leaves(self):
yield self
def post_order(self):
"""Return a post-order iterator for the tree."""
yield self
def pre_order(self):
"""Return a pre-order iterator for the tree."""
yield self
def _prefix_getter(self):
"""
The whitespace and comments preceding this token in the input.
"""
return self._prefix
def _prefix_setter(self, prefix):
self.changed()
self._prefix = prefix
prefix = property(_prefix_getter, _prefix_setter)
def convert(gr, raw_node):
"""
Convert raw node information to a Node or Leaf instance.
This is passed to the parser driver which calls it whenever a reduction of a
grammar rule produces a new complete node, so that the tree is build
strictly bottom-up.
"""
type, value, context, children = raw_node
if children or type in gr.number2symbol:
# If there's exactly one child, return that child instead of
# creating a new node.
if len(children) == 1:
return children[0]
return Node(type, children, context=context)
else:
return Leaf(type, value, context=context)
class BasePattern(object):
"""
A pattern is a tree matching pattern.
It looks for a specific node type (token or symbol), and
optionally for a specific content.
This is an abstract base class. There are three concrete
subclasses:
- LeafPattern matches a single leaf node;
- NodePattern matches a single node (usually non-leaf);
- WildcardPattern matches a sequence of nodes of variable length.
"""
# Defaults for instance variables
type = None # Node type (token if < 256, symbol if >= 256)
content = None # Optional content matching pattern
name = None # Optional name used to store match in results dict
def __new__(cls, *args, **kwds):
"""Constructor that prevents BasePattern from being instantiated."""
assert cls is not BasePattern, "Cannot instantiate BasePattern"
return object.__new__(cls)
def __repr__(self):
args = [type_repr(self.type), self.content, self.name]
while args and args[-1] is None:
del args[-1]
return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, args)))
def optimize(self):
"""
A subclass can define this as a hook for optimizations.
Returns either self or another node with the same effect.
"""
return self
def match(self, node, results=None):
"""
Does this pattern exactly match a node?
Returns True if it matches, False if not.
If results is not None, it must be a dict which will be
updated with the nodes matching named subpatterns.
Default implementation for non-wildcard patterns.
"""
if self.type is not None and node.type != self.type:
return False
if self.content is not None:
r = None
if results is not None:
r = {}
if not self._submatch(node, r):
return False
if r:
results.update(r)
if results is not None and self.name:
results[self.name] = node
return True
def match_seq(self, nodes, results=None):
"""
Does this pattern exactly match a sequence of nodes?
Default implementation for non-wildcard patterns.
"""
if len(nodes) != 1:
return False
return self.match(nodes[0], results)
def generate_matches(self, nodes):
"""
Generator yielding all matches for this pattern.
Default implementation for non-wildcard patterns.
"""
r = {}
if nodes and self.match(nodes[0], r):
yield 1, r
class LeafPattern(BasePattern):
def __init__(self, type=None, content=None, name=None):
"""
Initializer. Takes optional type, content, and name.
The type, if given must be a token type (< 256). If not given,
this matches any *leaf* node; the content may still be required.
The content, if given, must be a string.
If a name is given, the matching node is stored in the results
dict under that key.
"""
if type is not None:
assert 0 <= type < 256, type
if content is not None:
assert isinstance(content, basestring), repr(content)
self.type = type
self.content = content
self.name = name
def match(self, node, results=None):
"""Override match() to insist on a leaf node."""
if not isinstance(node, Leaf):
return False
return BasePattern.match(self, node, results)
def _submatch(self, node, results=None):
"""
Match the pattern's content to the node's children.
This assumes the node type matches and self.content is not None.
Returns True if it matches, False if not.
If results is not None, it must be a dict which will be
updated with the nodes matching named subpatterns.
When returning False, the results dict may still be updated.
"""
return self.content == node.value
class NodePattern(BasePattern):
wildcards = False
def __init__(self, type=None, content=None, name=None):
"""
Initializer. Takes optional type, content, and name.
The type, if given, must be a symbol type (>= 256). If the
type is None this matches *any* single node (leaf or not),
except if content is not None, in which it only matches
non-leaf nodes that also match the content pattern.
The content, if not None, must be a sequence of Patterns that
must match the node's children exactly. If the content is
given, the type must not be None.
If a name is given, the matching node is stored in the results
dict under that key.
"""
if type is not None:
assert type >= 256, type
if content is not None:
assert not isinstance(content, basestring), repr(content)
content = list(content)
for i, item in enumerate(content):
assert isinstance(item, BasePattern), (i, item)
if isinstance(item, WildcardPattern):
self.wildcards = True
self.type = type
self.content = content
self.name = name
def _submatch(self, node, results=None):
"""
Match the pattern's content to the node's children.
This assumes the node type matches and self.content is not None.
Returns True if it matches, False if not.
If results is not None, it must be a dict which will be
updated with the nodes matching named subpatterns.
When returning False, the results dict may still be updated.
"""
if self.wildcards:
for c, r in generate_matches(self.content, node.children):
if c == len(node.children):
if results is not None:
results.update(r)
return True
return False
if len(self.content) != len(node.children):
return False
for subpattern, child in zip(self.content, node.children):
if not subpattern.match(child, results):
return False
return True
class WildcardPattern(BasePattern):
"""
A wildcard pattern can match zero or more nodes.
This has all the flexibility needed to implement patterns like:
.* .+ .? .{m,n}
(a b c | d e | f)
(...)* (...)+ (...)? (...){m,n}
except it always uses non-greedy matching.
"""
def __init__(self, content=None, min=0, max=HUGE, name=None):
"""
Initializer.
Args:
content: optional sequence of subsequences of patterns;
if absent, matches one node;
if present, each subsequence is an alternative [*]
min: optional minimum number of times to match, default 0
max: optional maximum number of times to match, default HUGE
name: optional name assigned to this match
[*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is
equivalent to (a b c | d e | f g h); if content is None,
this is equivalent to '.' in regular expression terms.
The min and max parameters work as follows:
min=0, max=maxint: .*
min=1, max=maxint: .+
min=0, max=1: .?
min=1, max=1: .
If content is not None, replace the dot with the parenthesized
list of alternatives, e.g. (a b c | d e | f g h)*
"""
assert 0 <= min <= max <= HUGE, (min, max)
if content is not None:
content = tuple(map(tuple, content)) # Protect against alterations
# Check sanity of alternatives
assert len(content), repr(content) # Can't have zero alternatives
for alt in content:
assert len(alt), repr(alt) # Can have empty alternatives
self.content = content
self.min = min
self.max = max
self.name = name
def optimize(self):
"""Optimize certain stacked wildcard patterns."""
subpattern = None
if (self.content is not None and
len(self.content) == 1 and len(self.content[0]) == 1):
subpattern = self.content[0][0]
if self.min == 1 and self.max == 1:
if self.content is None:
return NodePattern(name=self.name)
if subpattern is not None and self.name == subpattern.name:
return subpattern.optimize()
if (self.min <= 1 and isinstance(subpattern, WildcardPattern) and
subpattern.min <= 1 and self.name == subpattern.name):
return WildcardPattern(subpattern.content,
self.min*subpattern.min,
self.max*subpattern.max,
subpattern.name)
return self
def match(self, node, results=None):
"""Does this pattern exactly match a node?"""
return self.match_seq([node], results)
def match_seq(self, nodes, results=None):
"""Does this pattern exactly match a sequence of nodes?"""
for c, r in self.generate_matches(nodes):
if c == len(nodes):
if results is not None:
results.update(r)
if self.name:
results[self.name] = list(nodes)
return True
return False
def generate_matches(self, nodes):
"""
Generator yielding matches for a sequence of nodes.
Args:
nodes: sequence of nodes
Yields:
(count, results) tuples where:
count: the match comprises nodes[:count];
results: dict containing named submatches.
"""
if self.content is None:
# Shortcut for special case (see __init__.__doc__)
for count in xrange(self.min, 1 + min(len(nodes), self.max)):
r = {}
if self.name:
r[self.name] = nodes[:count]
yield count, r
elif self.name == "bare_name":
yield self._bare_name_matches(nodes)
else:
# The reason for this is that hitting the recursion limit usually
# results in some ugly messages about how RuntimeErrors are being
# ignored. We don't do this on non-CPython implementation because
# they don't have this problem.
if hasattr(sys, "getrefcount"):
save_stderr = sys.stderr
sys.stderr = StringIO()
try:
for count, r in self._recursive_matches(nodes, 0):
if self.name:
r[self.name] = nodes[:count]
yield count, r
except RuntimeError:
# We fall back to the iterative pattern matching scheme if the recursive
# scheme hits the recursion limit.
for count, r in self._iterative_matches(nodes):
if self.name:
r[self.name] = nodes[:count]
yield count, r
finally:
if hasattr(sys, "getrefcount"):
sys.stderr = save_stderr
def _iterative_matches(self, nodes):
"""Helper to iteratively yield the matches."""
nodelen = len(nodes)
if 0 >= self.min:
yield 0, {}
results = []
# generate matches that use just one alt from self.content
for alt in self.content:
for c, r in generate_matches(alt, nodes):
yield c, r
results.append((c, r))
# for each match, iterate down the nodes
while results:
new_results = []
for c0, r0 in results:
# stop if the entire set of nodes has been matched
if c0 < nodelen and c0 <= self.max:
for alt in self.content:
for c1, r1 in generate_matches(alt, nodes[c0:]):
if c1 > 0:
r = {}
r.update(r0)
r.update(r1)
yield c0 + c1, r
new_results.append((c0 + c1, r))
results = new_results
def _bare_name_matches(self, nodes):
"""Special optimized matcher for bare_name."""
count = 0
r = {}
done = False
max = len(nodes)
while not done and count < max:
done = True
for leaf in self.content:
if leaf[0].match(nodes[count], r):
count += 1
done = False
break
r[self.name] = nodes[:count]
return count, r
def _recursive_matches(self, nodes, count):
"""Helper to recursively yield the matches."""
assert self.content is not None
if count >= self.min:
yield 0, {}
if count < self.max:
for alt in self.content:
for c0, r0 in generate_matches(alt, nodes):
for c1, r1 in self._recursive_matches(nodes[c0:], count+1):
r = {}
r.update(r0)
r.update(r1)
yield c0 + c1, r
class NegatedPattern(BasePattern):
def __init__(self, content=None):
"""
Initializer.
The argument is either a pattern or None. If it is None, this
only matches an empty sequence (effectively '$' in regex
lingo). If it is not None, this matches whenever the argument
pattern doesn't have any matches.
"""
if content is not None:
assert isinstance(content, BasePattern), repr(content)
self.content = content
def match(self, node):
# We never match a node in its entirety
return False
def match_seq(self, nodes):
# We only match an empty sequence of nodes in its entirety
return len(nodes) == 0
def generate_matches(self, nodes):
if self.content is None:
# Return a match if there is an empty sequence
if len(nodes) == 0:
yield 0, {}
else:
# Return a match if the argument pattern has no matches
for c, r in self.content.generate_matches(nodes):
return
yield 0, {}
def generate_matches(patterns, nodes):
"""
Generator yielding matches for a sequence of patterns and nodes.
Args:
patterns: a sequence of patterns
nodes: a sequence of nodes
Yields:
(count, results) tuples where:
count: the entire sequence of patterns matches nodes[:count];
results: dict containing named submatches.
"""
if not patterns:
yield 0, {}
else:
p, rest = patterns[0], patterns[1:]
for c0, r0 in p.generate_matches(nodes):
if not rest:
yield c0, r0
else:
for c1, r1 in generate_matches(rest, nodes[c0:]):
r = {}
r.update(r0)
r.update(r1)
yield c0 + c1, r
|