This file is indexed.

/usr/include/psurface/PSurface.h is in libpsurface-dev 2.0.0-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#ifndef PARAMETRIZATION_H
#define PARAMETRIZATION_H

#include "StaticVector.h"
#include "SurfaceBase.h"
#include "Domains.h"
#include "GlobalNodeIdx.h"
#include "NodeBundle.h"

#include "psurfaceAPI.h"

// forward declarations
class AmiraMesh;
class HxParamBundle;

#ifdef PSURFACE_STANDALONE
namespace psurface { class Surface; }
#else
class Surface;
#endif

namespace psurface {

template <class type, int dim> class Box;


/** The parametrization of an arbitrary surface over a simple base grid
    \tparam dim Dimension of the surface
    \tparam ctype The type used for coordinates
*/
template <int dim, class ctype>
class PSURFACE_API PSurface
    : public SurfaceBase<Vertex<ctype>, Edge, DomainTriangle<ctype> >{

public:

    /** \brief An exception being thrown by code in this class */
    class ParamError {};

    /// Destructor
    virtual ~PSurface();

    /** \brief Initializes the parametrization from a given second one.
     */
    void init(const PSurface* other);

    /** \brief Empties the PSurface object
     */
    void clear();

    /// Get box containing all vertices.
    virtual void getBoundingBox(Box<ctype,3>& bbox) const;

    /** \brief Sets up the internal data structures needed by the map() method.
     *
     * The map() method uses the Brown/Faigle algorithm for quick point location
     * in plane triangulations.  This algorithm requires the data structure for
     * the plane triangulation to comply with certain requirements.  In particular,
     * the edges that leave a vertex have to be in a cyclic order.  Thus
     * before usage of the parametrization, this routine has to be called once.
     */
    void createPointLocationStructure();

#ifndef PSURFACE_STANDALONE
    /// Returns the number of patches.
    int numPatches() const {
        int result = 0;
        for (size_t i=0; i<this->triangleArray.size(); i++)
          result = std::max(result, this->triangleArray[i].patch + 1);
        return result;
    }
#endif

    int getNumNodes() const;

    /** \brief Returns the number of node targets
     *
     * \deprecated
     */
    int numNodes() const {
        return iPos.size();
     }

    /// computes the number of true nodes
    int getNumTrueNodes();

    /** \brief Creates an explicit Surface object from the information implicitly
     * given by the parametrization.
     */
    void setupOriginalSurface();

    /** \brief Adds the triangular closure on each triangle.
     *
     * The image surface of the parametrization consists solely of triangles.
     * However, the preimage of such a triangle, restricted to a domain grid
     * triangle may be a quadrangle.  Since many operations on a base grid
     * triangle expect the graph there to be only triangles we triangulate
     * the graph using this routine.
     *
     * \bug When Ghost Nodes are present, more complex polygons than just
     * quadrangles can occur.  This routine is presently not able to handle them.
     */
    void insertExtraEdges();


    /// Removes the triangular closure on each triangle
    void removeExtraEdges();

    /// Returns a reference to the node specified by a GlobalNodeIdx
    Node<ctype>& nodes(const GlobalNodeIdx& n) {return this->triangles(n.tri).nodes[n.idx];}

    /// Returns a const reference to the node specified by a GlobalNodeIdx
    const Node<ctype>& nodes(const GlobalNodeIdx& n) const {return this->triangles(n.tri).nodes[n.idx];}

    /** \brief Procedural interface to the target Position in \f$R^3\f$ of a node.
     */
    StaticVector<ctype,3> imagePos(const GlobalNodeIdx& n) const {
        return imagePos(n.tri, n.idx);
    }

    /** \brief Procedural interface to the target Position in \f$R^3\f$ of a node.
     */
    StaticVector<ctype,3> imagePos(int tri, NodeIdx node) const;

    /** \brief Returns the local coordinates of the image of a node with
     * respect to a given image triangle.
     */
    StaticVector<ctype,2> getLocalTargetCoords(const GlobalNodeIdx& n, int targetTri) const;

    /**@name Mapping functions */
    //@{

    /** \brief The main routine to evaluate the parametrization function.
     *
     * The routine evaluates the parametrization function embodied by the
     * PSurface class.  It takes a point \f$x\f$ on the domain grid (specified
     * by giving a triangle number and barycentric coordinates on that triangle)
     * and returns the corresponding image point \f$\phi(x)\f$.  That image point is
     * given via the three vertices of the triangle \f$t\f$ it's on and its position
     * on \f$t\f$ in barycentric coordinates.  This general way of returning \f$\phi(x)\f$
     * allows to correctly interpolate data given on the target surface.
     * If you just want the position of \f$\phi(x)\f$ in \f$R^3\f$ or the surface
     * normal at that point you can call the appropriate convenience functions.
     *
     * @return <tt>true</tt> if everything went correctly, <tt> false</tt> if not.
     *
     * \todo Make this routine GHOST_NODE-proof
     * \todo Document seed!
     *
     */
    bool map(int tri,                ///< The triangle of the input point \f$x\f$
            const StaticVector<ctype,2>& p,                      ///< The barycentric coordinates of \f$x\f$ with respect to tri
            std::tr1::array<int,3>& vertices,               ///< Return value: The three vertices of the triangle that \f$\phi(x)\f$ is on
            StaticVector<ctype,2>& coords,                 ///< The barycentric coordinates of \f$\phi(x)\f$ wrt <tt>vertices</tt>
            int seed=-1
            ) const;


    /** \brief Convenience function for accessing the position of points on the target surface.
     *
     * Given a point \f$x\f$ on the base grid, this routine returns the position
     * of \f$\phi(x)\f$.
     *
     * Internally, this routine calls map().  Thus, it is not faster than calling
     * map() and computing the position oneself.
     *
     * @return <tt>true</tt> if everything went correctly, <tt> false</tt> if not.
     */
    bool positionMap(int tri, const StaticVector<ctype,2>& p, StaticVector<ctype,3>& result) const;

    /** \brief Convenience function for accessing the normals of the target surface.
     *
     * Given a point \f$x\f$ on the base grid, this routine returns the normal
     * of the target surface at \f$\phi(x)\f$.  It returns the direct triangle
     * normal, i.e., the normals are constant on each target triangle.
     *
     * Internally, this routine calls map().  Thus, it is not faster than calling
     * map() and computing the normal oneself.
     *
     * @return <tt>true</tt> if everything went correctly, <tt> false</tt> if not.
     */
    bool directNormalMap(int tri, const StaticVector<ctype,2>& p, StaticVector<ctype,3>& result) const;

    //@}



    /** \brief Given three nodes that form a triangle \f$t\f$ on a base grid triangle,
     * this routine returns the preimage nodes of the target triangle \f$T\f$ that
     * \f$t\f$ is part of.
     */
    void getActualVertices(int tri,
                           const std::tr1::array<NodeIdx, 3>& nds,
                           std::tr1::array<GlobalNodeIdx, 3>& vertices   ///< The result nodes are returned here
                           ) const;

    /** \brief Given three nodes that form a triangle \f$t\f$ on a base grid triangle,
     * this routine returns the index of the target triangle \f$T\f$ that
     * \f$t\f$ is part of.
     *
     * \return A triangle index, -1 if the input data was invalid.
     */
    int getImageSurfaceTriangle(int tri,
                                const std::tr1::array<NodeIdx, 3>& nds
                                ) const;

    /** \brief Returns the set of all target triangles that contain the image of a node.
     *
     * <b> Warning: </b> Shouldn't be called for an INTERSECTION_NODE
     * \todo Make this callable for INTERSECTION_NODEs.
     * <b> Warning: </b> The method assumes that Surface::computeTrianglesPerPoint has
     * been called before.
     */
    std::vector<int> getTargetTrianglesPerNode(const GlobalNodeIdx& n) const;



    /** \brief Inverses the orientation of all triangles (of a given patch)
     *
     * Inverses the orientation of the base grid triangles while maintaining
     * the parametrization consistent.  If a patch number is given, only triangles
     * of that patch are inverted, if not all triangles are affected.
     *
     * @return Number of flipped triangles.
     */
    int invertTriangles(int patch=-1);


    /** \brief Finds the endnode of the edge an INTERSECTION_NODE is on.
     *
     * This routine returns different things depending on the type of the Node you
     * call it for.
     * <ul>
     * <li> If it is not an INTERSECTION_NODE it just returns the input arguments.
     * <li> If it is an INTERSECTION_NODE, the algorithm starts looking along the
     * edge the input node is on, until it finds a nonINTERSECTION_NODE.  That node
     * is the end of the edge in that direction.  The search direction is the one
     * away from the input triangle, without first traversing it.
     * </ul>
     */
    GlobalNodeIdx getOtherEndNode(int tri, NodeIdx cN) const;


    /** \brief Tests the object for consistency.
     *
     * This routine is intended for debugging purposes.  It performs an
     * internal consistency check.  If a part of the check fails it
     * prints a (somewhat) meaningfull error message, the string in
     * <tt>where</tt> to tell you where the check was called from
     * and then evokes a SIGABRT.
     *
     * If NDEBUG is set checkConsistency() is completely empty.
     */
    void checkConsistency(const char* where) const;

    /** Not a fast implementation, but it works even if the edgePoint arrays
     * haven't been set up yet.
     */
    NodeBundle getNodeBundleAtVertex(int v) const;

protected:

    /// This is a service routine only for getTargetTrianglesPerNode
    void getTrianglesPerEdge(int from, int to, std::vector<int>& tris, int exception) const;

    /** \brief Internal routine used by map()
     */
    void handleMapOnEdge(int tri, const StaticVector<ctype,2>& p, const StaticVector<ctype,2>& a, const StaticVector<ctype,2>& b,
                         int edge, int edgePos, std::tr1::array<GlobalNodeIdx, 3>& vertices, StaticVector<ctype,2>& coords) const;

    /** \brief Internal routine used by setupOriginalSurface() */
    void appendTriangleToOriginalSurface(const std::tr1::array<int,3>& v, int patch);


    /////////////////////////////////////////////////////
    // Data members
    /////////////////////////////////////////////////////

public:
    /** This flag needs to set if the the map()-method on a DomainTriangle is used
        It is set by calling the method createPointLocationStructure().
        You should not set it deliberately unless you know what you're doing.*/
    bool hasUpToDatePointLocationStructure;

    /// The image positions of all nodes \deprecated To be replaced by a procedural interface
    std::vector<StaticVector<ctype,3> > iPos;

    /// The corresponding image surface
    Surface* surface;

};


/** \brief Mapping from one simplicial surface to another -- 1d-in-2d specialization
    \tparam ctype The type used for coordinates
*/
template <class ctype>
class PSURFACE_API PSurface<1,ctype>
{
public:

    class Node {
    public:

        Node() {}

        Node(ctype dLP, ctype rLP, bool nOV, bool nOTV, int rangeSegment0, int rangeSegment1)
            : domainLocalPosition(dLP), rangeLocalPosition(rLP),
              isNodeOnVertex(nOV), isNodeOnTargetVertex(nOTV),
              rightRangeSegment(-1)
        {
            rangeSegments[0] = rangeSegment0;
            rangeSegments[1] = rangeSegment1;
        }

        friend
        std::ostream& operator<< (std::ostream& s, const Node& node)
        {
            s << node.domainLocalPosition << ",   " << node.rangeLocalPosition << ",   "
              << ((node.isNodeOnVertex) ? "true" : "false") << "  "
              << ((node.isNodeOnTargetVertex) ? "true" : "false") << "  --  "
              << "rangeSegments: " << node.rangeSegments[0] << "  " << node.rangeSegments[1]
              << " -- " << node.rightRangeSegment << std::endl;
            return s;
        }

        ctype domainLocalPosition;

        ctype rangeLocalPosition;

        bool isNodeOnVertex;

        bool isNodeOnTargetVertex;

        int rangeSegments[2];

        int rightRangeSegment;
    };

    class DomainSegment {
    public:
        std::vector<Node> nodes;

        int points[2];

        int neighbor[2];
    };

    /** \brief Convenience function for accessing the position of points on the target surface.
     *
     * Given a point \f$x\f$ on the base grid, this routine returns the position
     * of \f$\phi(x)\f$.
     *
     * \bug This method is a stub, and not actually implemented yet.  It will print an
     *    error message and abort.
     *
     * @return <tt>true</tt> if everything went correctly, <tt> false</tt> if not.
     */
    bool positionMap(int tri, StaticVector<ctype,1>& p, StaticVector<ctype,2>& result) const
    {
        std::cerr << "Method PSurface<1,...>::positionMap is not implemented yet!" << std::endl;
        abort();
    }



    std::vector<StaticVector<ctype, 2> > domainVertices;

    std::vector<DomainSegment> domainSegments;

    std::vector<StaticVector<ctype, 2> > targetVertices;

    std::vector<std::tr1::array<int, 2> > targetSegments;
};

} // namespace psurface

#endif