This file is indexed.

/usr/include/x86_64-linux-gnu/pari/pariinl.h is in libpari-dev 2.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
/* Copyright (C) 2000-2010  The PARI group.

This file is part of the PARI/GP package.

PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.

Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */

/*******************************************************************/
/*                                                                 */
/*                          CONSTRUCTORS                           */
/*                                                                 */
/*******************************************************************/
#define retmkfrac(x,y)\
  do { GEN _v = cgetg(3, t_FRAC);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y); return _v; } while(0)
#define retmkrfrac(x,y)\
  do { GEN _v = cgetg(3, t_RFRAC);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y); return _v; } while(0)
#define retmkintmod(x,y)\
  do { GEN _v = cgetg(3, t_INTMOD);\
       gel(_v,1) = (y);\
       gel(_v,2) = (x); return _v; } while(0)
#define retmkcomplex(x,y)\
  do { GEN _v = cgetg(3, t_COMPLEX);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y); return _v; } while(0)
#define retmkpolmod(x,y)\
  do { GEN _v = cgetg(3, t_POLMOD);\
       gel(_v,1) = (y);\
       gel(_v,2) = (x); return _v; } while(0)
#define retmkvec(x)\
  do { GEN _v = cgetg(2, t_VEC);\
       gel(_v,1) = (x); return _v; } while(0)
#define retmkvec2(x,y)\
  do { GEN _v = cgetg(3, t_VEC);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y); return _v; } while(0)
#define retmkvec3(x,y,z)\
  do { GEN _v = cgetg(4, t_VEC);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z); return _v; } while(0)
#define retmkqfi(x,y,z)\
  do { GEN _v = cgetg(4, t_QFI);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z); return _v; } while(0)
#define retmkqfr(x,y,z,d)\
  do { GEN _v = cgetg(5, t_QFR);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (d); return _v; } while(0)
#define retmkquad(x,y,z)\
  do { GEN _v = cgetg(4, t_QUAD);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z); return _v; } while(0)
#define retmkvec4(x,y,z,t)\
  do { GEN _v = cgetg(5, t_VEC);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (t); return _v; } while(0)
#define retmkvec5(x,y,z,t,u)\
  do { GEN _v = cgetg(6, t_VEC);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (t);\
       gel(_v,5) = (u); return _v; } while(0)
#define retmkcol(x)\
  do { GEN _v = cgetg(2, t_COL);\
       gel(_v,1) = (x); return _v; } while(0)
#define retmkcol2(x,y)\
  do { GEN _v = cgetg(3, t_COL);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y); return _v; } while(0)
#define retmkcol3(x,y,z)\
  do { GEN _v = cgetg(4, t_COL);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z); return _v; } while(0)
#define retmkcol4(x,y,z,t)\
  do { GEN _v = cgetg(5, t_COL);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (t); return _v; } while(0)
#define retmkcol5(x,y,z,t,u)\
  do { GEN _v = cgetg(6, t_COL);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (t);\
       gel(_v,5) = (u); return _v; } while(0)
#define retmkcol6(x,y,z,t,u,v)\
  do { GEN _v = cgetg(7, t_COL);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (t);\
       gel(_v,5) = (u);\
       gel(_v,6) = (v); return _v; } while(0)
#define retmkmat(x)\
  do { GEN _v = cgetg(2, t_MAT);\
       gel(_v,1) = (x); return _v; } while(0)
#define retmkmat2(x,y)\
  do { GEN _v = cgetg(3, t_MAT);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y); return _v; } while(0)
#define retmkmat3(x,y,z)\
  do { GEN _v = cgetg(4, t_MAT);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z); return _v; } while(0)
#define retmkmat4(x,y,z,t)\
  do { GEN _v = cgetg(5, t_MAT);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (t); return _v; } while(0)
#define retmkmat5(x,y,z,t,u)\
  do { GEN _v = cgetg(6, t_MAT);\
       gel(_v,1) = (x);\
       gel(_v,2) = (y);\
       gel(_v,3) = (z);\
       gel(_v,4) = (t);\
       gel(_v,5) = (u); return _v; } while(0)

INLINE GEN
mkintmod(GEN x, GEN y) { retmkintmod(x,y); }
INLINE GEN
mkintmodu(ulong x, ulong y) {
  GEN v = cgetg(3,t_INTMOD);
  gel(v,1) = utoipos(y);
  gel(v,2) = utoi(x); return v;
}
INLINE GEN
mkpolmod(GEN x, GEN y) { retmkpolmod(x,y); }
INLINE GEN
mkfrac(GEN x, GEN y) { retmkfrac(x,y); }
INLINE GEN
mkfraccopy(GEN x, GEN y) { retmkfrac(icopy(x), icopy(y)); }
INLINE GEN
mkrfrac(GEN x, GEN y) { GEN v = cgetg(3, t_RFRAC);
  gel(v,1) = x; gel(v,2) = y; return v; }
INLINE GEN
mkrfraccopy(GEN x, GEN y) { GEN v = cgetg(3, t_RFRAC);
  gel(v,1) = gcopy(x); gel(v,2) = gcopy(y); return v; }
INLINE GEN
mkcomplex(GEN x, GEN y) { retmkcomplex(x,y); }
INLINE GEN
gen_I(void) { return mkcomplex(gen_0, gen_1); }
INLINE GEN
cgetc(long l) { retmkcomplex(cgetr(l), cgetr(l)); }
INLINE GEN
mkquad(GEN n, GEN x, GEN y) { GEN v = cgetg(4, t_QUAD);
  gel(v,1) = n; gel(v,2) = x; gel(v,3) = y; return v; }
/* vecsmall */
INLINE GEN
mkvecsmall(long x) { GEN v = cgetg(2, t_VECSMALL); v[1] = x; return v; }
INLINE GEN
mkvecsmall2(long x,long y) { GEN v = cgetg(3, t_VECSMALL);
  v[1]=x; v[2]=y; return v; }
INLINE GEN
mkvecsmall3(long x,long y,long z) { GEN v = cgetg(4, t_VECSMALL);
  v[1]=x; v[2]=y; v[3]=z; return v; }
INLINE GEN
mkvecsmall4(long x,long y,long z,long t) { GEN v = cgetg(5, t_VECSMALL);
  v[1]=x; v[2]=y; v[3]=z; v[4]=t; return v; }
INLINE GEN
mkvecsmall5(long x,long y,long z,long t,long u) { GEN v = cgetg(6, t_VECSMALL);
  v[1]=x; v[2]=y; v[3]=z; v[4]=t; v[5]=u; return v; }

INLINE GEN
mkqfi(GEN x, GEN y, GEN z) { retmkqfi(x,y,z); }
/* vec */
INLINE GEN
mkvec(GEN x) { retmkvec(x); }
INLINE GEN
mkvec2(GEN x, GEN y) { retmkvec2(x,y); }
INLINE GEN
mkvec3(GEN x, GEN y, GEN z) { retmkvec3(x,y,z); }
INLINE GEN
mkvec4(GEN x, GEN y, GEN z, GEN t) { retmkvec4(x,y,z,t); }
INLINE GEN
mkvec5(GEN x, GEN y, GEN z, GEN t, GEN u) { retmkvec5(x,y,z,t,u); }
INLINE GEN
mkvecs(long x) { retmkvec(stoi(x)); }
INLINE GEN
mkvec2s(long x, long y) { retmkvec2(stoi(x),stoi(y)); }
INLINE GEN
mkvec3s(long x, long y, long z) { retmkvec3(stoi(x),stoi(y),stoi(z)); }
INLINE GEN
mkvec4s(long x, long y, long z, long t) { retmkvec4(stoi(x),stoi(y),stoi(z),stoi(t)); }
INLINE GEN
mkveccopy(GEN x) { GEN v = cgetg(2, t_VEC); gel(v,1) = gcopy(x); return v; }
INLINE GEN
mkvec2copy(GEN x, GEN y) {
  GEN v = cgetg(3,t_VEC); gel(v,1) = gcopy(x); gel(v,2) = gcopy(y); return v; }
/* col */
INLINE GEN
mkcol(GEN x) { retmkcol(x); }
INLINE GEN
mkcol2(GEN x, GEN y) { retmkcol2(x,y); }
INLINE GEN
mkcol3(GEN x, GEN y, GEN z) { retmkcol3(x,y,z); }
INLINE GEN
mkcol4(GEN x, GEN y, GEN z, GEN t) { retmkcol4(x,y,z,t); }
INLINE GEN
mkcol5(GEN x, GEN y, GEN z, GEN t, GEN u) { retmkcol5(x,y,z,t,u); }
INLINE GEN
mkcol6(GEN x, GEN y, GEN z, GEN t, GEN u, GEN v) { retmkcol6(x,y,z,t,u,v); }
INLINE GEN
mkcols(long x) { retmkcol(stoi(x)); }
INLINE GEN
mkcol2s(long x, long y) { retmkcol2(stoi(x),stoi(y)); }
INLINE GEN
mkcol3s(long x, long y, long z) { retmkcol3(stoi(x),stoi(y),stoi(z)); }
INLINE GEN
mkcol4s(long x, long y, long z, long t) { retmkcol4(stoi(x),stoi(y),stoi(z),stoi(t)); }
INLINE GEN
mkcolcopy(GEN x) { GEN v = cgetg(2, t_COL); gel(v,1) = gcopy(x); return v; }
/* mat */
INLINE GEN
mkmat(GEN x) { retmkmat(x); }
INLINE GEN
mkmat2(GEN x, GEN y) { retmkmat2(x,y); }
INLINE GEN
mkmat3(GEN x, GEN y, GEN z) { retmkmat3(x,y,z); }
INLINE GEN
mkmat4(GEN x, GEN y, GEN z, GEN t) { retmkmat4(x,y,z,t); }
INLINE GEN
mkmat5(GEN x, GEN y, GEN z, GEN t, GEN u) { retmkmat5(x,y,z,t,u); }
INLINE GEN
mkmatcopy(GEN x) { GEN v = cgetg(2, t_MAT); gel(v,1) = gcopy(x); return v; }
INLINE GEN
mkerr(long x) { GEN v = cgetg(2, t_ERROR); v[1] = x; return v; }
INLINE GEN
mkoo(void) { GEN v = cgetg(2, t_INFINITY); gel(v,1) = gen_1; return v; }
INLINE GEN
mkmoo(void) { GEN v = cgetg(2, t_INFINITY); gel(v,1) = gen_m1; return v; }
INLINE long
inf_get_sign(GEN x) { return signe(gel(x,1)); }
/* pol */
INLINE GEN
pol_x(long v) {
  GEN p = cgetg(4, t_POL);
  p[1] = evalsigne(1)|evalvarn(v);
  gel(p,2) = gen_0;
  gel(p,3) = gen_1; return p;
}
/* x^n, assume n >= 0 */
INLINE GEN
pol_xn(long n, long v) {
  long i, a = n+2;
  GEN p = cgetg(a+1, t_POL);
  p[1] = evalsigne(1)|evalvarn(v);
  for (i = 2; i < a; i++) gel(p,i) = gen_0;
  gel(p,a) = gen_1; return p;
}
/* x^n, no assumption on n */
INLINE GEN
pol_xnall(long n, long v)
{
  if (n < 0) retmkrfrac(gen_1, pol_xn(-n,v));
  return pol_xn(n, v);
}
INLINE GEN
pol_1(long v) {
  GEN p = cgetg(3, t_POL);
  p[1] = evalsigne(1)|evalvarn(v);
  gel(p,2) = gen_1; return p;
}
INLINE GEN
pol_0(long v)
{
  GEN x = cgetg(2,t_POL);
  x[1] = evalvarn(v); return x;
}
#define retconst_vec(n,x)\
  do { long _i, _n = (n);\
       GEN _v = cgetg(_n+1, t_VEC), _x = (x);\
       for (_i = 1; _i <= _n; _i++) gel(_v,_i) = _x;\
       return _v; } while(0)
INLINE GEN
const_vec(long n, GEN x) { retconst_vec(n, x); }
#define retconst_col(n,x)\
  do { long _i, _n = (n);\
       GEN _v = cgetg(_n+1, t_COL), _x = (x);\
       for (_i = 1; _i <= _n; _i++) gel(_v,_i) = _x;\
       return _v; } while(0)
INLINE GEN
const_col(long n, GEN x) { retconst_col(n, x); }
INLINE GEN
const_vecsmall(long n, long c)
{
  long i;
  GEN V = cgetg(n+1,t_VECSMALL);
  for(i=1;i<=n;i++) V[i] = c;
  return V;
}

/***   ZERO   ***/
/* O(p^e) */
INLINE GEN
zeropadic(GEN p, long e)
{
  GEN y = cgetg(5,t_PADIC);
  gel(y,4) = gen_0;
  gel(y,3) = gen_1;
  gel(y,2) = icopy(p);
  y[1] = evalvalp(e) | _evalprecp(0);
  return y;
}
INLINE GEN
zeropadic_shallow(GEN p, long e)
{
  GEN y = cgetg(5,t_PADIC);
  gel(y,4) = gen_0;
  gel(y,3) = gen_1;
  gel(y,2) = p;
  y[1] = evalvalp(e) | _evalprecp(0);
  return y;
}
/* O(pol_x(v)^e) */
INLINE GEN
zeroser(long v, long e)
{
  GEN x = cgetg(2, t_SER);
  x[1] = evalvalp(e) | evalvarn(v); return x;
}
INLINE int
ser_isexactzero(GEN x)
{
  if (!signe(x)) switch(lg(x))
  {
    case 2: return 1;
    case 3: return isexactzero(gel(x,2));
  }
  return 0;
}
/* 0 * pol_x(v) */
INLINE GEN
zeropol(long v) { return pol_0(v); }
/* vector(n) */
INLINE GEN
zerocol(long n)
{
  GEN y = cgetg(n+1,t_COL);
  long i; for (i=1; i<=n; i++) gel(y,i) = gen_0;
  return y;
}
/* vectorv(n) */
INLINE GEN
zerovec(long n)
{
  GEN y = cgetg(n+1,t_VEC);
  long i; for (i=1; i<=n; i++) gel(y,i) = gen_0;
  return y;
}
/* matrix(m, n) */
INLINE GEN
zeromat(long m, long n)
{
  GEN y = cgetg(n+1,t_MAT);
  GEN v = zerocol(m);
  long i; for (i=1; i<=n; i++) gel(y,i) = v;
  return y;
}
/* = zero_zx, sv is a evalvarn()*/
INLINE GEN
zero_Flx(long sv) { return pol0_Flx(sv); }
INLINE GEN
zero_Flv(long n)
{
  GEN y = cgetg(n+1,t_VECSMALL);
  long i; for (i=1; i<=n; i++) y[i] = 0;
  return y;
}
/* matrix(m, n) */
INLINE GEN
zero_Flm(long m, long n)
{
  GEN y = cgetg(n+1,t_MAT);
  GEN v = zero_Flv(m);
  long i; for (i=1; i<=n; i++) gel(y,i) = v;
  return y;
}
/* matrix(m, n) */
INLINE GEN
zero_Flm_copy(long m, long n)
{
  GEN y = cgetg(n+1,t_MAT);
  long i; for (i=1; i<=n; i++) gel(y,i) = zero_Flv(m);
  return y;
}

INLINE GEN
zero_F2v(long m)
{
  long l = nbits2nlong(m);
  GEN v  = zero_Flv(l+1);
  v[1] = m;
  return v;
}

INLINE GEN
zero_F2m(long m, long n)
{
  long i;
  GEN M = cgetg(n+1, t_MAT);
  GEN v = zero_F2v(m);
  for (i = 1; i <= n; i++)
    gel(M,i) = v;
  return M;
}


INLINE GEN
zero_F2m_copy(long m, long n)
{
  long i;
  GEN M = cgetg(n+1, t_MAT);
  for (i = 1; i <= n; i++)
    gel(M,i)= zero_F2v(m);
  return M;
}

/* matrix(m, n) */
INLINE GEN
zeromatcopy(long m, long n)
{
  GEN y = cgetg(n+1,t_MAT);
  long i; for (i=1; i<=n; i++) gel(y,i) = zerocol(m);
  return y;
}

/* i-th vector in the standard basis */
INLINE GEN
col_ei(long n, long i) { GEN e = zerocol(n); gel(e,i) = gen_1; return e; }
INLINE GEN
vec_ei(long n, long i) { GEN e = zerovec(n); gel(e,i) = gen_1; return e; }
INLINE GEN
F2v_ei(long n, long i) { GEN e = zero_F2v(n); F2v_set(e,i); return e; }
INLINE GEN
vecsmall_ei(long n, long i) { GEN e = zero_zv(n); e[i] = 1; return e; }
INLINE GEN
Rg_col_ei(GEN x, long n, long i) { GEN e = zerocol(n); gel(e,i) = x; return e; }

INLINE GEN
shallowcopy(GEN x)
{ return typ(x) == t_MAT ? RgM_shallowcopy(x): leafcopy(x); }

/* routines for naive growarrays */
INLINE GEN
vectrunc_init(long l)
{
  GEN z = new_chunk(l);
  z[0] = evaltyp(t_VEC) | _evallg(1); return z;
}
INLINE void
vectrunc_append(GEN x, GEN t)
{ long l = lg(x); gel(x,l) = t; setlg(x, l+1); }
INLINE void
vectrunc_append_batch(GEN x, GEN y)
{
  long i, l = lg(x), ly = lg(y);
  GEN z = x + l-1;
  for (i = 1; i < ly; i++) gel(z,i) = gel(y,i);
  setlg(x, l+ly-1);
}
INLINE GEN
vecsmalltrunc_init(long l)
{
  GEN z = new_chunk(l);
  z[0] = evaltyp(t_VECSMALL) | _evallg(1); return z;
}
INLINE void
vecsmalltrunc_append(GEN x, long t)
{ long l = lg(x); x[l] = t; setlg(x, l+1); }

/*******************************************************************/
/*                                                                 */
/*                        VEC / COL / VECSMALL                     */
/*                                                                 */
/*******************************************************************/
/* shallow*/
INLINE GEN
vec_shorten(GEN v, long n)
{
  long i;
  GEN V = cgetg(n+1,t_VEC);
  for(i=1;i<=n;i++) gel(V,i) = gel(v,i);
  return V;
}
/* shallow*/
INLINE GEN
vec_lengthen(GEN v, long n)
{
  long i;
  long l=lg(v);
  GEN V = cgetg(n+1,t_VEC);
  for(i=1;i<l;i++) gel(V,i) = gel(v,i);
  return V;
}
/* shallow*/
INLINE GEN
vec_append(GEN V, GEN s)
{
  long i, l2 = lg(V);
  GEN res = cgetg(l2+1, typ(V));
  for (i = 1; i < l2; ++i) gel(res, i) = gel(V,i);
  gel(res,l2) = s; return res;
}
/* shallow*/
INLINE GEN
vec_setconst(GEN v, GEN x)
{
  long i, l = lg(v);
  for (i = 1; i < l; i++) gel(v,i) = x;
  return v;
}
INLINE GEN
vecsmall_shorten(GEN v, long n)
{
  long i;
  GEN V = cgetg(n+1,t_VECSMALL);
  for(i=1;i<=n;i++) V[i] = v[i];
  return V;
}
INLINE GEN
vecsmall_lengthen(GEN v, long n)
{
  long i, l = lg(v);
  GEN V = cgetg(n+1,t_VECSMALL);
  for(i=1;i<l;i++) V[i] = v[i];
  return V;
}

INLINE GEN
vec_to_vecsmall(GEN z)
{
  long i, l = lg(z);
  GEN x = cgetg(l, t_VECSMALL);
  for (i=1; i<l; i++) x[i] = itos(gel(z,i));
  return x;
}
INLINE GEN
vecsmall_to_vec(GEN z)
{
  long i, l = lg(z);
  GEN x = cgetg(l,t_VEC);
  for (i=1; i<l; i++) gel(x,i) = stoi(z[i]);
  return x;
}
INLINE GEN
vecsmall_to_col(GEN z)
{
  long i, l = lg(z);
  GEN x = cgetg(l,t_COL);
  for (i=1; i<l; i++) gel(x,i) = stoi(z[i]);
  return x;
}

INLINE int
vecsmall_lexcmp(GEN x, GEN y)
{
  long lx,ly,l,i;
  lx = lg(x);
  ly = lg(y); l = minss(lx,ly);
  for (i=1; i<l; i++)
    if (x[i] != y[i]) return x[i]<y[i]? -1: 1;
  if (lx == ly) return 0;
  return (lx < ly)? -1 : 1;
}

INLINE int
vecsmall_prefixcmp(GEN x, GEN y)
{
  long i, lx = lg(x), ly = lg(y), l = minss(lx,ly);
  for (i=1; i<l; i++)
    if (x[i] != y[i]) return x[i]<y[i]? -1: 1;
  return 0;
}

/*Can be used on t_VEC, but coeffs not gcopy-ed*/
INLINE GEN
vecsmall_prepend(GEN V, long s)
{
  long i, l2 = lg(V);
  GEN res = cgetg(l2+1, typ(V));
  res[1] = s;
  for (i = 2; i <= l2; ++i) res[i] = V[i - 1];
  return res;
}

INLINE GEN
vecsmall_append(GEN V, long s)
{
  long i, l2 = lg(V);
  GEN res = cgetg(l2+1, t_VECSMALL);
  for (i = 1; i < l2; ++i) res[i] = V[i];
  res[l2] = s; return res;
}

INLINE GEN
vecsmall_concat(GEN u, GEN v)
{
  long i, l1 = lg(u)-1, l2 = lg(v)-1;
  GEN res = cgetg(l1+l2+1, t_VECSMALL);
  for (i = 1; i <= l1; ++i) res[i]    = u[i];
  for (i = 1; i <= l2; ++i) res[i+l1] = v[i];
  return res;
}

/* return the number of indices where u and v are equal */
INLINE long
vecsmall_coincidence(GEN u, GEN v)
{
  long i, s = 0, l = minss(lg(u),lg(v));
  for(i=1; i<l; i++)
    if(u[i] == v[i]) s++;
  return s;
}

/* returns the first index i<=n such that x=v[i] if it exists, 0 otherwise */
INLINE long
vecsmall_isin(GEN v, long x)
{
  long i, l = lg(v);
  for (i = 1; i < l; i++)
    if (v[i] == x) return i;
  return 0;
}

INLINE long
vecsmall_pack(GEN V, long base, long mod)
{
  long i, s = 0;
  for(i=1; i<lg(V); i++) s = (base*s + V[i]) % mod;
  return s;
}

INLINE long
vecsmall_indexmax(GEN x)
{
  long i, i0 = 1, t = x[1], lx = lg(x);
  for (i=2; i<lx; i++)
    if (x[i] > t) t = x[i0=i];
  return i0;
}

INLINE long
vecsmall_max(GEN x)
{
  long i, t = x[1], lx = lg(x);
  for (i=2; i<lx; i++)
    if (x[i] > t) t = x[i];
  return t;
}

INLINE long
vecsmall_indexmin(GEN x)
{
  long i, i0 = 1, t = x[1], lx =lg(x);
  for (i=2; i<lx; i++)
    if (x[i] < t) t = x[i0=i];
  return i0;
}

INLINE long
vecsmall_min(GEN x)
{
  long i, t = x[1], lx =lg(x);
  for (i=2; i<lx; i++)
    if (x[i] < t) t = x[i];
  return t;
}

INLINE int
ZV_isscalar(GEN x)
{
  long l = lg(x);
  while (--l > 1)
    if (signe(gel(x, l))) return 0;
  return 1;
}
INLINE int
QV_isscalar(GEN x)
{
  long lx = lg(x),i;
  for (i=2; i<lx; i++)
    if (!isintzero(gel(x, i))) return 0;
  return 1;
}
INLINE int
RgV_isscalar(GEN x)
{
  long lx = lg(x),i;
  for (i=2; i<lx; i++)
    if (!gequal0(gel(x, i))) return 0;
  return 1;
}
INLINE int
RgX_isscalar(GEN x)
{
  long i;
  for (i=lg(x)-1; i>2; i--)
    if (!gequal0(gel(x, i))) return 0;
  return 1;
}
INLINE long
RgX_equal_var(GEN x, GEN y) { return varn(x) == varn(y) && RgX_equal(x,y); }

INLINE int
RgX_is_rational(GEN x)
{
  long i;
  for (i = lg(x)-1; i > 1; i--)
    if (!is_rational_t(typ(gel(x,i)))) return 0;
  return 1;
}
INLINE int
RgX_is_ZX(GEN x)
{
  long i;
  for (i = lg(x)-1; i > 1; i--)
    if (typ(gel(x,i)) != t_INT) return 0;
  return 1;
}
INLINE int
RgX_is_QX(GEN x)
{
  long k = lg(x)-1;
  for ( ; k>1; k--)
    if (!is_rational_t(typ(gel(x,k)))) return 0;
  return 1;
}
INLINE int
RgX_is_monomial(GEN x)
{
  long i;
  if (!signe(x)) return 0;
  for (i=lg(x)-2; i>1; i--)
    if (!isexactzero(gel(x,i))) return 0;
  return 1;
}
INLINE int
RgV_is_ZV(GEN x)
{
  long i;
  for (i = lg(x)-1; i > 0; i--)
    if (typ(gel(x,i)) != t_INT) return 0;
  return 1;
}
INLINE int
RgV_is_QV(GEN x)
{
  long i;
  for (i = lg(x)-1; i > 0; i--)
    if (!is_rational_t(typ(gel(x,i)))) return 0;
  return 1;
}

/********************************************************************/
/**                                                                **/
/**            Dynamic arrays implementation                       **/
/**                                                                **/
/********************************************************************/
INLINE void **
pari_stack_base(pari_stack *s) { return s->data; }

INLINE void
pari_stack_init(pari_stack *s, size_t size, void **data)
{
  s->data = data;
  *data = NULL;
  s->n = 0;
  s->alloc = 0;
  s->size = size;
}

INLINE void
pari_stack_alloc(pari_stack *s, long nb)
{
  void **sdat = pari_stack_base(s);
  long alloc = s->alloc;
  if (s->n+nb <= alloc) return;
  if (!alloc)
    alloc = nb;
  else
  {
    while (s->n+nb > alloc) alloc <<= 1;
  }
  *sdat = pari_realloc(*sdat,alloc*s->size);
  s->alloc = alloc;
}

INLINE long
pari_stack_new(pari_stack *s) { pari_stack_alloc(s, 1); return s->n++; }

INLINE void
pari_stack_delete(pari_stack *s)
{
  void **sdat = pari_stack_base(s);
  if (*sdat) pari_free(*sdat);
}

INLINE void
pari_stack_pushp(pari_stack *s, void *u)
{
  long n = pari_stack_new(s);
  void **sdat =(void**) *pari_stack_base(s);
  sdat[n] = u;
}

/*******************************************************************/
/*                                                                 */
/*                            EXTRACT                              */
/*                                                                 */
/*******************************************************************/
INLINE GEN
vecslice(GEN A, long y1, long y2)
{
  long i,lB = y2 - y1 + 2;
  GEN B = cgetg(lB, typ(A));
  for (i=1; i<lB; i++) B[i] = A[y1-1+i];
  return B;
}
INLINE GEN
vecslicepermute(GEN A, GEN p, long y1, long y2)
{
  long i,lB = y2 - y1 + 2;
  GEN B = cgetg(lB, typ(A));
  for (i=1; i<lB; i++) B[i] = A[p[y1-1+i]];
  return B;
}
/* rowslice(rowpermute(A,p), x1, x2) */
INLINE GEN
rowslicepermute(GEN A, GEN p, long x1, long x2)
{
  long i, lB = lg(A);
  GEN B = cgetg(lB, typ(A));
  for (i=1; i<lB; i++) gel(B,i) = vecslicepermute(gel(A,i),p,x1,x2);
  return B;
}
INLINE GEN
rowslice(GEN A, long x1, long x2)
{
  long i, lB = lg(A);
  GEN B = cgetg(lB, typ(A));
  for (i=1; i<lB; i++) gel(B,i) = vecslice(gel(A,i),x1,x2);
  return B;
}

INLINE GEN
matslice(GEN A, long x1, long x2, long y1, long y2)
{
  return rowslice(vecslice(A, y1, y2), x1, x2);
}

/* shallow, remove coeff of index j */
INLINE GEN
rowsplice(GEN a, long j)
{
  long i, l;
  GEN b = cgetg_copy(a,&l);
  for (i = 1; i < l; i++) gel(b,i) = vecsplice(gel(a,i), j);
  return b;
}
/* shallow, remove coeff of index j */
INLINE GEN
vecsplice(GEN a, long j)
{
  long i, k, l = lg(a);
  GEN b;
  if (l == 1) pari_err(e_MISC, "incorrect component in vecsplice");
  b = cgetg(l-1, typ(a));
  for (i = k = 1; i < l; i++)
    if (i != j) gel(b, k++) = gel(a,i);
  return b;
}
/* shallow */
INLINE GEN
RgM_minor(GEN a, long i, long j)
{
  GEN b = vecsplice(a, j);
  long k, l = lg(b);
  for (k = 1; k < l; k++) gel(b,k) = vecsplice(gel(b,k), i);
  return b;
}

/* A[x0,] */
INLINE GEN
row(GEN A, long x0)
{
  long i, lB = lg(A);
  GEN B  = cgetg(lB, t_VEC);
  for (i=1; i<lB; i++) gel(B, i) = gcoeff(A, x0, i);
  return B;
}
INLINE GEN
Flm_row(GEN A, long x0)
{
  long i, lB = lg(A);
  GEN B  = cgetg(lB, t_VECSMALL);
  for (i=1; i<lB; i++) B[i] = coeff(A, x0, i);
  return B;
}
/* A[x0,] */
INLINE GEN
rowcopy(GEN A, long x0)
{
  long i, lB = lg(A);
  GEN B  = cgetg(lB, t_VEC);
  for (i=1; i<lB; i++) gel(B, i) = gcopy(gcoeff(A, x0, i));
  return B;
}
/* A[x0, x1..x2] */
INLINE GEN
row_i(GEN A, long x0, long x1, long x2)
{
  long i, lB = x2 - x1 + 2;
  GEN B  = cgetg(lB, t_VEC);
  for (i=x1; i<=x2; i++) gel(B, i) = gcoeff(A, x0, i);
  return B;
}

INLINE GEN
vecreverse(GEN A)
{
  long i, l;
  GEN B = cgetg_copy(A, &l);
  for (i=1; i<l; i++) gel(B, i) = gel(A, l-i);
  return B;
}

INLINE GEN
vecsmall_reverse(GEN A)
{
  long i, l;
  GEN B = cgetg_copy(A, &l);
  for (i=1; i<l; i++) B[i] = A[l-i];
  return B;
}

INLINE void
vecreverse_inplace(GEN y)
{
  long ly = lg(y), lim = ly>>1, i;
  for (i = 1; i <= lim; i++)
  {
    GEN z = gel(y,i);
    gel(y,i)    = gel(y,ly-i);
    gel(y,ly-i) = z;
  }
}

INLINE GEN
vecsmallpermute(GEN A, GEN p) { return perm_mul(A, p); }

INLINE GEN
vecpermute(GEN A, GEN p)
{
  long i,lB = lg(p);
  GEN B = cgetg(lB, typ(A));
  for (i=1; i<lB; i++) gel(B, i) = gel(A, p[i]);
  return B;
}
INLINE GEN
rowpermute(GEN A, GEN p)
{
  long i, lB = lg(A);
  GEN B = cgetg(lB, typ(A));
  for (i=1; i<lB; i++)
    gel(B, i) = typ(gel(A,i)) == t_VECSMALL ? vecsmallpermute(gel(A, i), p):
                                                    vecpermute(gel(A, i), p);
  return B;
}
/*******************************************************************/
/*                                                                 */
/*                          PERMUTATIONS                           */
/*                                                                 */
/*******************************************************************/
/* identity permutation */
INLINE GEN
identity_perm(long n)
{
  GEN perm = cgetg(n+1, t_VECSMALL);
  long i;
  for (i = 1; i <= n; i++) perm[i] = i;
  return perm;
}

/* assume d <= n */
INLINE GEN
cyclic_perm(long n, long d)
{
  GEN perm = cgetg(n+1, t_VECSMALL);
  long i;
  for (i = 1; i <= n-d; i++) perm[i] = i+d;
  for (     ; i <= n;   i++) perm[i] = i-n+d;
  return perm;
}

/* Multiply (compose) two permutations */
INLINE GEN
perm_mul(GEN s, GEN t)
{
  GEN u;
  long i, l = lg(t);
  u = cgetg(l, t_VECSMALL);
  for (i = 1; i < l; i++) u[i] = s[ t[i] ];
  return u;
}
/* Compute the inverse (reciprocal) of a permutation. */
INLINE GEN
perm_inv(GEN x)
{
  long i, lx;
  GEN y = cgetg_copy(x, &lx);
  for (i=1; i<lx; i++) y[ x[i] ] = i;
  return y;
}
/* Return s*t*s^-1 */
INLINE GEN
perm_conj(GEN s, GEN t)
{
  long i, l;
  GEN v = cgetg_copy(s, &l);
  for (i = 1; i < l; i++) v[ s[i] ] = s[ t[i] ];
  return v;
}

/*********************************************************************/
/*                       MALLOC/FREE WRAPPERS                        */
/*********************************************************************/
#define BLOCK_SIGALRM_START          \
{                                    \
  int block=PARI_SIGINT_block;       \
  PARI_SIGINT_block = 2;             \
  MT_SIGINT_BLOCK(block);

#define BLOCK_SIGINT_START           \
{                                    \
  int block=PARI_SIGINT_block;       \
  PARI_SIGINT_block = 1;             \
  MT_SIGINT_BLOCK(block);

#define BLOCK_SIGINT_END             \
  PARI_SIGINT_block = block;         \
  MT_SIGINT_UNBLOCK(block);          \
  if (!block && PARI_SIGINT_pending) \
  {                                  \
    int sig = PARI_SIGINT_pending;   \
    PARI_SIGINT_pending = 0;         \
    raise(sig);                      \
  }                                  \
}

INLINE void
pari_free(void *pointer)
{
  BLOCK_SIGINT_START;
  free(pointer);
  BLOCK_SIGINT_END;
}
INLINE void*
pari_malloc(size_t size)
{
  if (size)
  {
    char *tmp;
    BLOCK_SIGINT_START;
    tmp = (char*)malloc(size);
    BLOCK_SIGINT_END;
    if (!tmp) pari_err(e_MEM);
    return tmp;
  }
  if (DEBUGMEM) pari_warn(warner,"mallocing NULL object");
  return NULL;
}
INLINE void*
pari_realloc(void *pointer, size_t size)
{
  char *tmp;

  BLOCK_SIGINT_START;
  if (!pointer) tmp = (char *) malloc(size);
  else tmp = (char *) realloc(pointer,size);
  BLOCK_SIGINT_END;
  if (!tmp) pari_err(e_MEM);
  return tmp;
}
INLINE void*
pari_calloc(size_t size)
{
  void *t = pari_malloc(size);
  memset(t, 0, size); return t;
}
INLINE GEN
cgetalloc(long t, size_t l)
{
  GEN x = (GEN)pari_malloc(l * sizeof(long));
  x[0] = evaltyp(t) | evallg(l); return x;
}

/*******************************************************************/
/*                                                                 */
/*                       GARBAGE COLLECTION                        */
/*                                                                 */
/*******************************************************************/
/* copy integer x as if we had avma = av */
INLINE GEN
icopy_avma(GEN x, pari_sp av)
{
  long i = lgefint(x), lx = i;
  GEN y = ((GEN)av) - i;
  while (--i > 0) y[i] = x[i];
  y[0] = evaltyp(t_INT)|evallg(lx);
  return y;
}
/* copy leaf x as if we had avma = av */
INLINE GEN
leafcopy_avma(GEN x, pari_sp av)
{
  long i = lg(x);
  GEN y = ((GEN)av) - i;
  while (--i > 0) y[i] = x[i];
  y[0] = x[0] & (~CLONEBIT);
  return y;
}
INLINE GEN
gerepileuptoleaf(pari_sp av, GEN x)
{
  long lx;
  GEN q;

  if (!isonstack(x) || (GEN)av<=x) { avma = av; return x; }
  lx = lg(x);
  q = ((GEN)av) - lx;
  avma = (pari_sp)q;
  while (--lx >= 0) q[lx] = x[lx];
  return q;
}
INLINE GEN
gerepileuptoint(pari_sp av, GEN x)
{
  if (!isonstack(x) || (GEN)av<=x) { avma = av; return x; }
  avma = (pari_sp)icopy_avma(x, av);
  return (GEN)avma;
}
INLINE GEN
gerepileupto(pari_sp av, GEN x)
{
  if (!isonstack(x) || (GEN)av<=x) { avma = av; return x; }
  switch(typ(x))
  { /* non-default = !is_recursive_t(tq) */
    case t_INT: return gerepileuptoint(av, x);
    case t_REAL:
    case t_STR:
    case t_VECSMALL: return gerepileuptoleaf(av,x);
    default:
      /* NB: x+i --> ((long)x) + i*sizeof(long) */
      return gerepile(av, (pari_sp) (x+lg(x)), x);
  }
}

/* gerepileupto(av, gcopy(x)) */
INLINE GEN
gerepilecopy(pari_sp av, GEN x)
{
  if (is_recursive_t(typ(x)))
  {
    GENbin *p = copy_bin(x);
    avma = av; return bin_copy(p);
  }
  else
  {
    avma = av;
    if (x < (GEN)av) {
      if (x < (GEN)pari_mainstack->bot) new_chunk(lg(x));
      x = leafcopy_avma(x, av);
      avma = (pari_sp)x;
    } else
      x = leafcopy(x);
    return x;
  }
}

/* Takes an array of pointers to GENs, of length n. Copies all
 * objects to contiguous locations and cleans up the stack between
 * av and avma. */
INLINE void
gerepilemany(pari_sp av, GEN* gptr[], int n)
{
  int i;
  for (i=0; i<n; i++) *gptr[i] = (GEN)copy_bin(*gptr[i]);
  avma = av;
  for (i=0; i<n; i++) *gptr[i] = bin_copy((GENbin*)*gptr[i]);
}

INLINE void
gerepileall(pari_sp av, int n, ...)
{
  int i;
  va_list a; va_start(a, n);
  if (n < 10)
  {
    GEN *gptr[10];
    for (i=0; i<n; i++)
    { gptr[i] = va_arg(a,GEN*); *gptr[i] = (GEN)copy_bin(*gptr[i]); }
    avma = av;
    for (--i; i>=0; i--) *gptr[i] = bin_copy((GENbin*)*gptr[i]);

  }
  else
  {
    GEN **gptr = (GEN**)  pari_malloc(n*sizeof(GEN*));
    for (i=0; i<n; i++)
    { gptr[i] = va_arg(a,GEN*); *gptr[i] = (GEN)copy_bin(*gptr[i]); }
    avma = av;
    for (--i; i>=0; i--) *gptr[i] = bin_copy((GENbin*)*gptr[i]);
    pari_free(gptr);
  }
  va_end(a);
}

INLINE void
gerepilecoeffs(pari_sp av, GEN x, int n)
{
  int i;
  for (i=0; i<n; i++) gel(x,i) = (GEN)copy_bin(gel(x,i));
  avma = av;
  for (i=0; i<n; i++) gel(x,i) = bin_copy((GENbin*)x[i]);
}

/* p from copy_bin. Copy p->x back to stack, then destroy p */
INLINE GEN
bin_copy(GENbin *p)
{
  GEN x, y, base;
  long dx, len;

  x   = p->x; if (!x) { pari_free(p); return gen_0; }
  len = p->len;
  base= p->base; dx = x - base;
  y = (GEN)memcpy((void*)new_chunk(len), (void*)GENbinbase(p), len*sizeof(long));
  y += dx;
  p->rebase(y, ((ulong)y-(ulong)x));
  pari_free(p); return y;
}

INLINE GEN
GENbinbase(GENbin *p) { return (GEN)(p + 1); }

INLINE void
cgiv(GEN x)
{
  pari_sp av = (pari_sp)(x+lg(x));
  if (isonstack((GEN)av)) avma = av;
}

INLINE void
killblock(GEN x) { gunclone(x); }

INLINE int
is_universal_constant(GEN x) { return (x >= gen_0 && x <= ghalf); }

/*******************************************************************/
/*                                                                 */
/*                    CONVERSION / ASSIGNMENT                      */
/*                                                                 */
/*******************************************************************/
/* z is a type which may be a t_COMPLEX component (not a t_QUAD) */
INLINE GEN
cxcompotor(GEN z, long prec)
{
  switch(typ(z))
  {
    case t_INT:  return itor(z, prec);
    case t_FRAC: return fractor(z, prec);
    case t_REAL: return rtor(z, prec);
    default: pari_err_TYPE("cxcompotor",z); return NULL; /* not reached */
  }
}
INLINE GEN
cxtofp(GEN x, long prec)
{ retmkcomplex(cxcompotor(gel(x,1),prec), cxcompotor(gel(x,2),prec)); }

INLINE double
gtodouble(GEN x)
{
  if (typ(x)!=t_REAL) {
    pari_sp av = avma;
    x = gtofp(x, DEFAULTPREC);
    if (typ(x)!=t_REAL) pari_err_TYPE("gtodouble [t_REAL expected]", x);
    avma = av;
  }
  return rtodbl(x);
}
INLINE long
gtos(GEN x) {
  if (typ(x) != t_INT) pari_err_TYPE("gtos [integer expected]",x);
  return itos(x);
}

INLINE ulong
gtou(GEN x) {
  if (typ(x) != t_INT || signe(x)<0)
    pari_err_TYPE("gtou [integer >=0 expected]",x);
  return itou(x);
}

INLINE GEN
absfrac(GEN x)
{
  GEN y = cgetg(3, t_FRAC);
  gel(y,1) = absi(gel(x,1));
  gel(y,2) = icopy(gel(x,2)); return y;
}
INLINE GEN
absfrac_shallow(GEN x)
{ return signe(gel(x,1))>0? x: mkfrac(negi(gel(x,1)), gel(x,2)); }
INLINE GEN
Q_abs(GEN x) { return (typ(x) == t_INT)? absi(x): absfrac(x); }
INLINE GEN
Q_abs_shallow(GEN x)
{ return (typ(x) == t_INT)? absi_shallow(x): absfrac_shallow(x); }
INLINE GEN
R_abs_shallow(GEN x)
{ return (typ(x) == t_FRAC)? absfrac_shallow(x): mpabs_shallow(x); }
INLINE GEN
R_abs(GEN x)
{ return (typ(x) == t_FRAC)? absfrac(x): mpabs(x); }

/* Force z to be of type real/complex with floating point components */
INLINE GEN
gtofp(GEN z, long prec)
{
  switch(typ(z))
  {
    case t_INT:  return itor(z, prec);
    case t_FRAC: return fractor(z, prec);
    case t_REAL: return rtor(z, prec);
    case t_COMPLEX: {
      GEN a = gel(z,1), b = gel(z,2);
      if (isintzero(b)) return cxcompotor(a, prec);
      if (isintzero(a)) {
        GEN y = cgetg(3, t_COMPLEX);
        b = cxcompotor(b, prec);
        gel(y,1) = real_0_bit(expo(b) - prec2nbits(prec));
        gel(y,2) = b; return y;
      }
      return cxtofp(z, prec);
    }
    case t_QUAD: return quadtofp(z, prec);
    default: pari_err_TYPE("gtofp",z); return NULL; /* not reached */
  }
}
/* Force z to be of type real / int */
INLINE GEN
gtomp(GEN z, long prec)
{
  switch(typ(z))
  {
    case t_INT:  return z;
    case t_FRAC: return fractor(z, prec);
    case t_REAL: return rtor(z, prec);
    case t_QUAD: z = quadtofp(z, prec);
                 if (typ(z) == t_REAL) return z;
    default: pari_err_TYPE("gtomp",z); return NULL; /* not reached */
  }
}

INLINE GEN
RgX_gtofp(GEN x, long prec)
{
  long l;
  GEN y = cgetg_copy(x, &l);
  while (--l > 1) gel(y,l) = gtofp(gel(x,l), prec);
  y[1] = x[1]; return y;
}
INLINE GEN
RgC_gtofp(GEN x, long prec)
{
  long l = lg(x);
  GEN y = cgetg(l, t_COL);
  while (--l > 0) gel(y,l) = gtofp(gel(x,l), prec);
  return y;
}
INLINE GEN
RgM_gtofp(GEN x, long prec)
{
  long l;
  GEN y = cgetg_copy(x, &l);
  while (--l > 0) gel(y,l) = RgC_gtofp(gel(x,l), prec);
  return y;
}
INLINE GEN
RgC_gtomp(GEN x, long prec)
{
  long l = lg(x);
  GEN y = cgetg(l, t_COL);
  while (--l > 0) gel(y,l) = gtomp(gel(x,l), prec);
  return y;
}
INLINE GEN
RgM_gtomp(GEN x, long prec)
{
  long l;
  GEN y = cgetg_copy(x, &l);
  while (--l > 0) gel(y,l) = RgC_gtomp(gel(x,l), prec);
  return y;
}

INLINE GEN
RgX_fpnorml2(GEN x, long prec)
{
  pari_sp av = avma;
  return gerepileupto(av, gnorml2(RgX_gtofp(x, prec)));
}
INLINE GEN
RgC_fpnorml2(GEN x, long prec)
{
  pari_sp av = avma;
  return gerepileupto(av, gnorml2(RgC_gtofp(x, prec)));
}
INLINE GEN
RgM_fpnorml2(GEN x, long prec)
{
  pari_sp av = avma;
  return gerepileupto(av, gnorml2(RgM_gtofp(x, prec)));
}

/* y a t_REAL */
INLINE void
affgr(GEN x, GEN y)
{
  pari_sp av;
  switch(typ(x)) {
    case t_INT:  affir(x,y); break;
    case t_REAL: affrr(x,y); break;
    case t_FRAC: rdiviiz(gel(x,1),gel(x,2), y); break;
    case t_QUAD: av = avma; affgr(quadtofp(x,realprec(y)), y); avma = av; break;
    default: pari_err_TYPE2("=",x,y);
  }
}

INLINE GEN
affc_fixlg(GEN x, GEN res)
{
  if (typ(x) == t_COMPLEX)
  {
    affrr_fixlg(gel(x,1), gel(res,1));
    affrr_fixlg(gel(x,2), gel(res,2));
  }
  else
  {
    avma = (pari_sp)(res+3);
    res = cgetr(realprec(gel(res,1)));
    affrr_fixlg(x, res);
  }
  return res;
}

INLINE GEN
trunc_safe(GEN x) { long e; return gcvtoi(x,&e); }

/*******************************************************************/
/*                                                                 */
/*                          LENGTH CONVERSIONS                     */
/*                                                                 */
/*******************************************************************/
INLINE long
ndec2nlong(long x) { return 1 + (long)((x)*(LOG2_10/BITS_IN_LONG)); }
INLINE long
ndec2prec(long x) { return 2 + ndec2nlong(x); }
INLINE long
ndec2nbits(long x) { return ndec2nlong(x) << TWOPOTBITS_IN_LONG; }
/* Fast implementation of ceil(x / (8*sizeof(long))); typecast to (ulong)
 * to avoid overflow. Faster than 1 + ((x-1)>>TWOPOTBITS_IN_LONG)) :
 *   addl, shrl instead of subl, sarl, addl */
INLINE long
nbits2nlong(long x) {
  return (long)(((ulong)x+BITS_IN_LONG-1) >> TWOPOTBITS_IN_LONG);
}

INLINE long
nbits2extraprec(long x) {
  return (long)(((ulong)x+BITS_IN_LONG-1) >> TWOPOTBITS_IN_LONG);
}

/* Fast implementation of 2 + nbits2nlong(x) */
INLINE long
nbits2prec(long x) {
  return (long)(((ulong)x+3*BITS_IN_LONG-1) >> TWOPOTBITS_IN_LONG);
}
INLINE long
nbits2lg(long x) {
  return (long)(((ulong)x+3*BITS_IN_LONG-1) >> TWOPOTBITS_IN_LONG);
}
/* ceil(x / sizeof(long)) */
INLINE long
nchar2nlong(long x) {
  return (long)(((ulong)x+sizeof(long)-1) >> (TWOPOTBITS_IN_LONG-3L));
}
INLINE long
prec2nbits(long x) { return (x-2) * BITS_IN_LONG; }
INLINE double
bit_accuracy_mul(long x, double y) { return (x-2) * (BITS_IN_LONG*y); }
INLINE double
prec2nbits_mul(long x, double y) { return (x-2) * (BITS_IN_LONG*y); }
INLINE long
bit_prec(GEN x) { return prec2nbits(realprec(x)); }
INLINE long
bit_accuracy(long x) { return prec2nbits(x); }
INLINE long
prec2ndec(long x) { return (long)prec2nbits_mul(x, LOG10_2); }
INLINE long
nbits2ndec(long x) { return (long)(x * LOG10_2); }
INLINE long
precdbl(long x) {return (x - 1) << 1;}
INLINE long
divsBIL(long n) { return n >> TWOPOTBITS_IN_LONG; }
INLINE long
remsBIL(long n) { return n & (BITS_IN_LONG-1); }

/*********************************************************************/
/**                                                                 **/
/**                      OPERATIONS MODULO m                        **/
/**                                                                 **/
/*********************************************************************/
/* Assume m > 0, more efficient if 0 <= a, b < m */

INLINE GEN
Fp_red(GEN a, GEN m) { return modii(a, m); }
INLINE GEN
Fp_add(GEN a, GEN b, GEN m)
{
  pari_sp av=avma;
  GEN p = addii(a,b);
  long s = signe(p);
  if (!s) return p; /* = gen_0 */
  if (s > 0) /* general case */
  {
    GEN t = subii(p, m);
    s = signe(t);
    if (!s) { avma = av; return gen_0; }
    if (s < 0) { avma = (pari_sp)p; return p; }
    if (cmpii(t, m) < 0) return gerepileuptoint(av, t); /* general case ! */
    p = remii(t, m);
  }
  else
    p = modii(p, m);
  return gerepileuptoint(av, p);
}
INLINE GEN
Fp_sub(GEN a, GEN b, GEN m)
{
  pari_sp av=avma;
  GEN p = subii(a,b);
  long s = signe(p);
  if (!s) return p; /* = gen_0 */
  if (s > 0)
  {
    if (cmpii(p, m) < 0) return p; /* general case ! */
    p = remii(p, m);
  }
  else
  {
    GEN t = addii(p, m);
    if (!s) { avma = av; return gen_0; }
    if (s > 0) return gerepileuptoint(av, t); /* general case ! */
    p = modii(t, m);
  }
  return gerepileuptoint(av, p);
}
INLINE GEN
Fp_neg(GEN b, GEN m)
{
  pari_sp av = avma;
  long s = signe(b);
  GEN p;
  if (!s) return gen_0;
  if (s > 0)
  {
    p = subii(m, b);
    if (signe(p) >= 0) return p; /* general case ! */
    p = modii(p, m);
  } else
    p = remii(negi(b), m);
  return gerepileuptoint(av, p);
}

INLINE GEN
Fp_halve(GEN a, GEN p)
{
  if (mpodd(a)) a = addii(a,p);
  return shifti(a,-1);
}

/* assume 0 <= u < p and ps2 = p>>1 */
INLINE GEN
Fp_center(GEN u, GEN p, GEN ps2)
{ return abscmpii(u,ps2)<=0? icopy(u): subii(u,p); }

/* x + y*z mod p */
INLINE GEN
Fp_addmul(GEN x, GEN y, GEN z, GEN p)
{
  pari_sp av;
  if (!signe(y) || !signe(z)) return Fp_red(x, p);
  if (!signe(x)) return Fp_mul(z,y, p);
  av = avma;
  return gerepileuptoint(av, modii(addii(x, mulii(y,z)), p));
}

INLINE GEN
Fp_mul(GEN a, GEN b, GEN m)
{
  pari_sp av=avma;
  GEN p; /*HACK: assume modii use <=lg(p)+(lg(m)<<1) space*/
  (void)new_chunk(lg(a)+lg(b)+(lg(m)<<1));
  p = mulii(a,b);
  avma = av; return modii(p,m);
}
INLINE GEN
Fp_sqr(GEN a, GEN m)
{
  pari_sp av=avma;
  GEN p; /*HACK: assume modii use <=lg(p)+(lg(m)<<1) space*/
  (void)new_chunk((lg(a)+lg(m))<<1);
  p = sqri(a);
  avma = av; return modii(p,m);
}
INLINE GEN
Fp_mulu(GEN a, ulong b, GEN m)
{
  long l = lgefint(m);
  if (l == 3)
  {
    ulong mm = m[2];
    return utoi( Fl_mul(umodiu(a, mm), b, mm) );
  } else {
    pari_sp av = avma;
    GEN p; /*HACK: assume modii use <=lg(p)+(lg(m)<<1) space*/
    (void)new_chunk(lg(a)+1+(l<<1));
    p = muliu(a,b);
    avma = av; return modii(p,m);
  }
}
INLINE GEN
Fp_muls(GEN a, long b, GEN m)
{
  long l = lgefint(m);
  if (l == 3)
  {
    ulong mm = m[2];
    if (b < 0)
    {
      ulong t = Fl_mul(umodiu(a, mm), -b, mm);
      return t? utoipos(mm - t): gen_0;
    }
    else
      return utoi( Fl_mul(umodiu(a, mm), b, mm) );
  } else {
    pari_sp av = avma;
    GEN p; /*HACK: assume modii use <=lg(p)+(lg(m)<<1) space*/
    (void)new_chunk(lg(a)+1+(l<<1));
    p = mulis(a,b);
    avma = av; return modii(p,m);
  }
}

INLINE GEN
Fp_inv(GEN a, GEN m)
{
  GEN res;
  if (! invmod(a,m,&res)) pari_err_INV("Fp_inv", mkintmod(res,m));
  return res;
}
INLINE GEN
Fp_invsafe(GEN a, GEN m)
{
  GEN res;
  if (! invmod(a,m,&res)) return NULL;
  return res;
}
INLINE GEN
Fp_div(GEN a, GEN b, GEN m)
{
  pari_sp av=avma;
  GEN p; /*HACK: assume modii use <=lg(p)+(lg(m)<<1) space*/
  (void)new_chunk(lg(a)+(lg(m)<<1));
  p = mulii(a, Fp_inv(b,m));
  avma = av; return modii(p,m);
}

INLINE GEN
Flx_mulu(GEN x, ulong a, ulong p) { return Flx_Fl_mul(x,a%p,p); }

/*******************************************************************/
/*                                                                 */
/*                        ADDMULII / SUBMULII                      */
/*                                                                 */
/*******************************************************************/
/* x - y*z */
INLINE GEN
submulii(GEN x, GEN y, GEN z)
{
  long lx = lgefint(x), ly, lz;
  pari_sp av;
  GEN t;
  if (lx == 2) { t = mulii(z,y); togglesign(t); return t; }
  ly = lgefint(y);
  if (ly == 2) return icopy(x);
  lz = lgefint(z);
  av = avma; (void)new_chunk(lx+ly+lz); /* HACK */
  t = mulii(z, y);
  avma = av; return subii(x,t);
}
/* y*z - x */
INLINE GEN
mulsubii(GEN y, GEN z, GEN x)
{
  long lx = lgefint(x), ly, lz;
  pari_sp av;
  GEN t;
  if (lx == 2) return mulii(z,y);
  ly = lgefint(y);
  if (ly == 2) return negi(x);
  lz = lgefint(z);
  av = avma; (void)new_chunk(lx+ly+lz); /* HACK */
  t = mulii(z, y);
  avma = av; return subii(t,x);
}

/* x - u*y */
INLINE GEN
submuliu(GEN x, GEN y, ulong u)
{
  pari_sp av;
  long ly = lgefint(y);
  if (ly == 2) return icopy(x);
  av = avma;
  (void)new_chunk(3+ly+lgefint(x)); /* HACK */
  y = mului(u,y);
  avma = av; return subii(x, y);
}
/* x + u*y */
INLINE GEN
addmuliu(GEN x, GEN y, ulong u)
{
  pari_sp av;
  long ly = lgefint(y);
  if (ly == 2) return icopy(x);
  av = avma;
  (void)new_chunk(3+ly+lgefint(x)); /* HACK */
  y = mului(u,y);
  avma = av; return addii(x, y);
}
/* x - u*y */
INLINE GEN
submuliu_inplace(GEN x, GEN y, ulong u)
{
  pari_sp av;
  long ly = lgefint(y);
  if (ly == 2) return x;
  av = avma;
  (void)new_chunk(3+ly+lgefint(x)); /* HACK */
  y = mului(u,y);
  avma = av; return subii(x, y);
}
/* x + u*y */
INLINE GEN
addmuliu_inplace(GEN x, GEN y, ulong u)
{
  pari_sp av;
  long ly = lgefint(y);
  if (ly == 2) return x;
  av = avma;
  (void)new_chunk(3+ly+lgefint(x)); /* HACK */
  y = mului(u,y);
  avma = av; return addii(x, y);
}
/* ux + vy */
INLINE GEN
lincombii(GEN u, GEN v, GEN x, GEN y)
{
  long lx = lgefint(x), ly;
  GEN p1, p2;
  pari_sp av;
  if (lx == 2) return mulii(v,y);
  ly = lgefint(y);
  if (ly == 2) return mulii(u,x);
  av = avma; (void)new_chunk(lx+ly+lgefint(u)+lgefint(v)); /* HACK */
  p1 = mulii(u,x);
  p2 = mulii(v,y);
  avma = av; return addii(p1,p2);
}

/*******************************************************************/
/*                                                                 */
/*                          GEN SUBTYPES                           */
/*                                                                 */
/*******************************************************************/

INLINE int
is_const_t(long t) { return (t < t_POLMOD); }
INLINE int
is_extscalar_t(long t) { return (t <= t_POL); }
INLINE int
is_intreal_t(long t) { return (t <= t_REAL); }
INLINE int
is_matvec_t(long t) { return (t >= t_VEC && t <= t_MAT); }
INLINE int
is_noncalc_t(long tx) { return (tx) >= t_LIST; }
INLINE int
is_rational_t(long t) { return (t == t_INT || t == t_FRAC); }
INLINE int
is_real_t(long t) { return (t == t_INT || t == t_REAL || t == t_FRAC); }
INLINE int
is_recursive_t(long t) { return lontyp[t]; }
INLINE int
is_scalar_t(long t) { return (t < t_POL); }
INLINE int
is_vec_t(long t) { return (t == t_VEC || t == t_COL); }

/*******************************************************************/
/*                                                                 */
/*                         TRANSCENDENTAL                          */
/*                                                                 */
/*******************************************************************/
INLINE GEN
sqrtr(GEN x) {
  long s = signe(x);
  if (s == 0) return real_0_bit(expo(x) >> 1);
  if (s >= 0) return sqrtr_abs(x);
  retmkcomplex(gen_0, sqrtr_abs(x));
}
INLINE GEN
cbrtr(GEN x) {
  long s = signe(x);
  GEN r;
  if (s == 0) return real_0_bit(expo(x) / 3);
  r = cbrtr_abs(x);
  if (s < 0) togglesign(r);
  return r;
}
/* x^(1/n) */
INLINE GEN
sqrtnr(GEN x, long n) {
  switch(n)
  {
    case 1: return rcopy(x);
    case 2: return sqrtr(x);
    case 3: return cbrtr(x);
  }
  return mpexp(divrs(mplog(x), n));
}
INLINE long
logint(GEN B, GEN y) { return logintall(B,y,NULL); }

/*******************************************************************/
/*                                                                 */
/*                         MISCELLANEOUS                           */
/*                                                                 */
/*******************************************************************/
INLINE int ismpzero(GEN x) { return is_intreal_t(typ(x)) && !signe(x); }
INLINE int isintzero(GEN x) { return typ(x) == t_INT && !signe(x); }
INLINE int isint1(GEN x) { return typ(x)==t_INT && equali1(x); }
INLINE int isintm1(GEN x){ return typ(x)==t_INT && equalim1(x);}
INLINE int equali1(GEN n)
{ return (ulong) n[1] == (evallgefint(3UL) | evalsigne(1)) && n[2] == 1; }
INLINE int equalim1(GEN n)
{ return (ulong) n[1] == (evallgefint(3UL) | evalsigne(-1)) && n[2] == 1; }
/* works only for POSITIVE integers */
INLINE int is_pm1(GEN n)
{ return lgefint(n) == 3 && n[2] == 1; }
INLINE int is_bigint(GEN n)
{ long l = lgefint(n); return l > 3 || (l == 3 && (n[2] & HIGHBIT)); }

INLINE int odd(long x) { return x & 1; }
INLINE int both_odd(long x, long y) { return x & y & 1; }

INLINE int
isonstack(GEN x)
{ return ((pari_sp)x >= pari_mainstack->bot
       && (pari_sp)x <  pari_mainstack->top); }

/* assume x != 0 and x t_REAL, return an approximation to log2(|x|) */
INLINE double
dbllog2r(GEN x)
{ return log2((double)(ulong)x[2]) + (double)(expo(x) - (BITS_IN_LONG-1)); }

INLINE GEN
mul_content(GEN cx, GEN cy)
{
  if (!cx) return cy;
  if (!cy) return cx;
  return gmul(cx,cy);
}
INLINE GEN
mul_denom(GEN dx, GEN dy)
{
  if (!dx) return dy;
  if (!dy) return dx;
  return mulii(dx,dy);
}

/* POLYNOMIALS */
INLINE GEN
constant_coeff(GEN x) { return signe(x)? gel(x,2): gen_0; }
INLINE GEN
leading_coeff(GEN x) { return lg(x) == 2? gen_0: gel(x,lg(x)-1); }
INLINE ulong
Flx_lead(GEN x) { return lg(x) == 2? 0: x[lg(x)-1]; }
INLINE long
degpol(GEN x) { return lg(x)-3; }
INLINE long
lgpol(GEN x) { return lg(x)-2; }
INLINE long
lgcols(GEN x) { return lg(gel(x,1)); }
INLINE long
nbrows(GEN x) { return lg(gel(x,1))-1; }
INLINE GEN
truecoeff(GEN x, long n) { return polcoeff0(x,n,-1); }

INLINE GEN
RgXQ_mul(GEN y, GEN x, GEN T) { return RgX_rem(RgX_mul(y, x), T); }
INLINE GEN
RgXQ_sqr(GEN x, GEN T) { return RgX_rem(RgX_sqr(x), T); }

INLINE GEN
ZXQ_mul(GEN y, GEN x, GEN T) { return ZX_rem(ZX_mul(y, x), T); }
INLINE GEN
ZXQ_sqr(GEN x, GEN T) { return ZX_rem(ZX_sqr(x), T); }

INLINE GEN
RgX_copy(GEN x)
{
  long lx, i;
  GEN y = cgetg_copy(x, &lx); y[1] = x[1];
  for (i = 2; i<lx; i++) gel(y,i) = gcopy(gel(x,i));
  return y;
}
/* have to use ulong to avoid silly warnings from gcc "assuming signed
 * overflow does not occur" */
INLINE GEN
RgX_coeff(GEN x, long n)
{
  ulong l = lg(x);
  return (n < 0 || ((ulong)n+3) > l)? gen_0: gel(x,n+2);
}
INLINE GEN
RgX_renormalize(GEN x) { return RgX_renormalize_lg(x, lg(x)); }
INLINE GEN
RgX_div(GEN x, GEN y) { return RgX_divrem(x,y,NULL); }
INLINE GEN
RgX_rem(GEN x, GEN y) { return RgX_divrem(x,y,ONLY_REM); }
INLINE GEN
RgXQX_div(GEN x, GEN y, GEN T) { return RgXQX_divrem(x,y,T,NULL); }
INLINE GEN
RgXQX_rem(GEN x, GEN y, GEN T) { return RgXQX_divrem(x,y,T,ONLY_REM); }
INLINE GEN
FpX_div(GEN x, GEN y, GEN p) { return FpX_divrem(x,y,p, NULL); }
INLINE GEN
Flx_div(GEN x, GEN y, ulong p) { return Flx_divrem(x,y,p, NULL); }
INLINE GEN
F2x_div(GEN x, GEN y) { return F2x_divrem(x,y, NULL); }
INLINE GEN
FpV_FpC_mul(GEN x, GEN y, GEN p) { return FpV_dotproduct(x,y,p); }
INLINE GEN
pol0_Flx(long sv) { return mkvecsmall(sv); }
INLINE GEN
pol1_Flx(long sv) { return mkvecsmall2(sv, 1); }
INLINE GEN
polx_Flx(long sv) { return mkvecsmall3(sv, 0, 1); }
INLINE GEN
zero_zx(long sv) { return zero_Flx(sv); }
INLINE GEN
polx_zx(long sv) { return polx_Flx(sv); }
INLINE GEN
zx_shift(GEN x, long n) { return Flx_shift(x,n); }
INLINE GEN
zx_renormalize(GEN x, long l) { return Flx_renormalize(x,l); }
INLINE GEN
zero_F2x(long sv) { return zero_Flx(sv); }
INLINE GEN
pol0_F2x(long sv) { return pol0_Flx(sv); }
INLINE GEN
pol1_F2x(long sv) { return pol1_Flx(sv); }
INLINE GEN
polx_F2x(long sv) { return mkvecsmall2(sv, 2); }
INLINE int
F2x_equal1(GEN x) { return Flx_equal1(x); }
INLINE int
F2x_equal(GEN V, GEN W) { return Flx_equal(V,W); }
INLINE GEN
F2x_copy(GEN x) { return leafcopy(x); }
INLINE GEN
F2v_copy(GEN x) { return leafcopy(x); }
INLINE GEN
Flv_copy(GEN x) { return leafcopy(x); }
INLINE GEN
Flx_copy(GEN x) { return leafcopy(x); }
INLINE GEN
vecsmall_copy(GEN x) { return leafcopy(x); }
INLINE int
Flx_equal1(GEN x) { return degpol(x)==0 && x[2] == 1; }
INLINE int
ZX_equal1(GEN x) { return degpol(x)==0 && equali1(gel(x,2)); }

INLINE GEN
ZX_renormalize(GEN x, long lx)    { return ZXX_renormalize(x,lx); }
INLINE GEN
FpX_renormalize(GEN x, long lx)   { return ZXX_renormalize(x,lx); }
INLINE GEN
FpXX_renormalize(GEN x, long lx)  { return ZXX_renormalize(x,lx); }
INLINE GEN
FpXQX_renormalize(GEN x, long lx) { return ZXX_renormalize(x,lx); }
INLINE GEN
F2x_renormalize(GEN x, long lx)   { return Flx_renormalize(x,lx); }
INLINE GEN
F2v_to_F2x(GEN x, long sv) {
  GEN y = leafcopy(x);
  y[1] = sv; F2x_renormalize(y, lg(y)); return y;
}

INLINE GEN
ZX_ZXY_resultant(GEN a, GEN b) { return ZX_ZXY_rnfequation(a,b,NULL); }
INLINE long
sturm(GEN x) { return sturmpart(x, NULL, NULL); }
INLINE GEN
resultant(GEN x, GEN y) { return resultant_all(x,y,NULL); }

INLINE long
gval(GEN x, long v) {
  pari_sp av = avma;
  long n = gvaluation(x, pol_x(v));
  avma = av; return n;
}

INLINE void
RgX_shift_inplace_init(long v)
{ if (v) (void)cgetg(v, t_VECSMALL); }
/* shift polynomial in place. assume v free cells have been left before x */
INLINE GEN
RgX_shift_inplace(GEN x, long v)
{
  long i, lx;
  GEN y, z;
  if (!v) return x;
  lx = lg(x);
  if (lx == 2) return x;
  y = x + v;
  z = x + lx;
  /* stackdummy from normalizepol: move it up */
  if (lg(z) != v) x[lx + v] = z[0];
  for (i = lx-1; i >= 2; i--) gel(y,i) = gel(x,i);
  for (i = v+1;  i >= 2; i--) gel(x,i) = gen_0;
  /* leave x[1] alone: it is correct */
  x[0] = evaltyp(t_POL) | evallg(lx+v); return x;
}


/* LINEAR ALGEBRA */
INLINE GEN
zv_to_ZV(GEN x) { return vecsmall_to_vec(x); }
INLINE GEN
zc_to_ZC(GEN x) { return vecsmall_to_col(x); }
INLINE GEN
ZV_to_zv(GEN x) { return vec_to_vecsmall(x); }
INLINE GEN
zx_to_zv(GEN x, long N) { return Flx_to_Flv(x,N); }
INLINE GEN
zv_to_zx(GEN x, long sv) { return Flv_to_Flx(x,sv); }
INLINE GEN
zm_to_zxV(GEN x, long sv) { return Flm_to_FlxV(x,sv); }
INLINE GEN
zero_zm(long x, long y) { return zero_Flm(x,y); }
INLINE GEN
zero_zv(long x) { return zero_Flv(x); }
INLINE GEN
zm_transpose(GEN x) { return Flm_transpose(x); }
INLINE GEN
zm_copy(GEN x) { return Flm_copy(x); }
INLINE GEN
zv_copy(GEN x) { return Flv_copy(x); }
INLINE GEN
zm_row(GEN x, long i) { return Flm_row(x,i); }

INLINE GEN
ZC_hnfrem(GEN x, GEN y) { return ZC_hnfremdiv(x,y,NULL); }
INLINE GEN
ZM_hnfrem(GEN x, GEN y) { return ZM_hnfdivrem(x,y,NULL); }
INLINE GEN
ZM_lll(GEN x, double D, long f) { return ZM_lll_norms(x,D,f,NULL); }
INLINE void
RgM_dimensions(GEN x, long *m, long *n) { *n = lg(x)-1; *m = *n? nbrows(x): 0; }
INLINE GEN
RgM_inv(GEN a) { return RgM_solve(a, NULL); }
INLINE GEN
RgM_shallowcopy(GEN x)
{
  long l;
  GEN y = cgetg_copy(x, &l);
  while (--l > 0) gel(y,l) = leafcopy(gel(x,l));
  return y;
}
INLINE GEN
F2m_copy(GEN x) { return RgM_shallowcopy(x); }

INLINE GEN
Flm_copy(GEN x) { return RgM_shallowcopy(x); }

/* divisibility: return 1 if y[i] | x[i] for all i, 0 otherwise. Assume
 * x,y are ZV of the same length */
INLINE int
ZV_dvd(GEN x, GEN y)
{
  long i, l = lg(x);
  for (i=1; i < l; i++)
    if ( ! dvdii( gel(x,i), gel(y,i) ) ) return 0;
  return 1;
}

/* Fq */
INLINE GEN
Fq_red(GEN x, GEN T, GEN p)
{ return typ(x)==t_INT? Fp_red(x,p): FpXQ_red(x,T,p); }
INLINE GEN
Fq_to_FpXQ(GEN x, GEN T, GEN p /*unused*/)
{
  (void) p;
  return typ(x)==t_INT ? scalarpol(x, get_FpX_var(T)): x;
}

INLINE GEN
gener_Fq_local(GEN T, GEN p, GEN L)
{ return T? gener_FpXQ_local(T,p, L)
          : pgener_Fp_local(p, L); }

/* FpXQX */
INLINE GEN
FpXQX_div(GEN x, GEN y, GEN T, GEN p) { return FpXQX_divrem(x, y, T, p, NULL); }
INLINE GEN
FlxqX_div(GEN x, GEN y, GEN T, ulong p) { return FlxqX_divrem(x, y, T, p, NULL); }
INLINE GEN
F2xqX_div(GEN x, GEN y, GEN T) { return F2xqX_divrem(x, y, T, NULL); }

/* FqX */
INLINE GEN
FqX_red(GEN z, GEN T, GEN p) { return T? FpXQX_red(z, T, p): FpX_red(z, p); }
INLINE GEN
FqX_add(GEN x,GEN y,GEN T,GEN p) { return T? FpXX_add(x,y,p): FpX_add(x,y,p); }
INLINE GEN
FqX_neg(GEN x,GEN T,GEN p) { return T? FpXX_neg(x,p): FpX_neg(x,p); }
INLINE GEN
FqX_sub(GEN x,GEN y,GEN T,GEN p) { return T? FpXX_sub(x,y,p): FpX_sub(x,y,p); }
INLINE GEN
FqX_Fp_mul(GEN P, GEN u, GEN T, GEN p)
{ return T? FpXX_Fp_mul(P, u, p): FpX_Fp_mul(P, u, p); }
INLINE GEN
FqX_Fq_mul(GEN P, GEN U, GEN T, GEN p)
{ return typ(U)==t_INT ? FqX_Fp_mul(P, U, T, p): FpXQX_FpXQ_mul(P, U, T, p); }
INLINE GEN
FqX_mul(GEN x, GEN y, GEN T, GEN p)
{ return T? FpXQX_mul(x, y, T, p): FpX_mul(x, y, p); }
INLINE GEN
FqX_mulu(GEN x, ulong y, GEN T, GEN p)
{ return T? FpXX_mulu(x, y, p): FpX_mulu(x, y, p); }
INLINE GEN
FqX_sqr(GEN x, GEN T, GEN p)
{ return T? FpXQX_sqr(x, T, p): FpX_sqr(x, p); }
INLINE GEN
FqX_powu(GEN x, ulong n, GEN T, GEN p)
{ return T? FpXQX_powu(x, n, T, p): FpX_powu(x, n, p); }
INLINE GEN
FqX_div(GEN x, GEN y, GEN T, GEN p)
{ return T? FpXQX_divrem(x,y,T,p,NULL): FpX_divrem(x,y,p,NULL); }
INLINE GEN
FqX_get_red(GEN S, GEN T, GEN p)
{ return T? FpXQX_get_red(S,T,p): FpX_get_red(S,p); }
INLINE GEN
FqX_rem(GEN x, GEN y, GEN T, GEN p)
{ return T? FpXQX_rem(x,y,T,p): FpX_rem(x,y,p); }
INLINE GEN
FqX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *z)
{ return T? FpXQX_divrem(x,y,T,p,z): FpX_divrem(x,y,p,z); }
INLINE GEN
FqX_div_by_X_x(GEN x, GEN y, GEN T, GEN p, GEN *z)
{ return T? FpXQX_div_by_X_x(x,y,T,p,z): FpX_div_by_X_x(x,y,p,z); }
INLINE GEN
FqX_halfgcd(GEN P,GEN Q,GEN T,GEN p)
{return T? FpXQX_halfgcd(P,Q,T,p): FpX_halfgcd(P,Q,p);}
INLINE GEN
FqX_gcd(GEN P,GEN Q,GEN T,GEN p)
{return T? FpXQX_gcd(P,Q,T,p): FpX_gcd(P,Q,p);}
INLINE GEN
FqX_extgcd(GEN P,GEN Q,GEN T,GEN p, GEN *U, GEN *V)
{ return T? FpXQX_extgcd(P,Q,T,p,U,V): FpX_extgcd(P,Q,p,U,V); }
INLINE GEN
FqX_normalize(GEN z, GEN T, GEN p) { return T? FpXQX_normalize(z, T, p): FpX_normalize(z, p); }
INLINE GEN
FqX_deriv(GEN f, /*unused*/GEN T, GEN p) { (void)T; return FpXX_deriv(f, p); }
INLINE GEN
FqX_factor(GEN f, GEN T, GEN p) { return T?FpXQX_factor(f, T, p): FpX_factor(f, p); }
INLINE GEN
FqX_roots(GEN f, GEN T, GEN p) { return T?FpXQX_roots(f, T, p): FpX_roots(f, p); }

/*FqXQ*/
INLINE GEN
FqXQ_add(GEN x, GEN y, GEN S/*unused*/, GEN T, GEN p)
{ (void)S; return T? FpXX_add(x,y,p): FpX_add(x,y,p); }
INLINE GEN
FqXQ_sub(GEN x, GEN y, GEN S/*unused*/, GEN T, GEN p)
{ (void)S; return T? FpXX_sub(x,y,p): FpX_sub(x,y,p); }
INLINE GEN
FqXQ_div(GEN x, GEN y, GEN S, GEN T, GEN p)
{ return T? FpXQXQ_div(x,y,S,T,p): FpXQ_div(x,y,S,p); }
INLINE GEN
FqXQ_inv(GEN x, GEN S, GEN T, GEN p)
{ return T? FpXQXQ_inv(x,S,T,p): FpXQ_inv(x,S,p); }
INLINE GEN
FqXQ_invsafe(GEN x, GEN S, GEN T, GEN p)
{ return T? FpXQXQ_invsafe(x,S,T,p): FpXQ_inv(x,S,p); }
INLINE GEN
FqXQ_mul(GEN x, GEN y, GEN S, GEN T, GEN p)
{ return T? FpXQXQ_mul(x,y,S,T,p): FpXQ_mul(x,y,S,p); }
INLINE GEN
FqXQ_sqr(GEN x, GEN S, GEN T, GEN p)
{ return T? FpXQXQ_sqr(x,S,T,p): FpXQ_sqr(x,S,p); }
INLINE GEN
FqXQ_pow(GEN x, GEN n, GEN S, GEN T, GEN p)
{ return T? FpXQXQ_pow(x,n,S,T,p): FpXQ_pow(x,n,S,p); }

/*FpXQ*/
INLINE GEN
FpXQ_add(GEN x,GEN y,GEN T/*unused*/,GEN p)
{ (void)T; return FpX_add(x,y,p); }
INLINE GEN
FpXQ_sub(GEN x,GEN y,GEN T/*unused*/,GEN p)
{ (void)T; return FpX_sub(x,y,p); }

/*Flxq*/
INLINE GEN
Flxq_add(GEN x,GEN y,GEN T/*unused*/,ulong p)
{ (void)T; return Flx_add(x,y,p); }
INLINE GEN
Flxq_sub(GEN x,GEN y,GEN T/*unused*/,ulong p)
{ (void)T; return Flx_sub(x,y,p); }

/* F2x */

INLINE ulong
F2x_coeff(GEN x,long v)
{
   ulong u=(ulong)x[2+divsBIL(v)];
   return (u>>remsBIL(v))&1UL;
}

INLINE void
F2x_clear(GEN x,long v)
{
   ulong* u=(ulong*)&x[2+divsBIL(v)];
   *u&=~(1UL<<remsBIL(v));
}

INLINE void
F2x_set(GEN x,long v)
{
   ulong* u=(ulong*)&x[2+divsBIL(v)];
   *u|=1UL<<remsBIL(v);
}

INLINE void
F2x_flip(GEN x,long v)
{
   ulong* u=(ulong*)&x[2+divsBIL(v)];
   *u^=1UL<<remsBIL(v);
}

/* F2v */

INLINE ulong
F2v_coeff(GEN x,long v) { return F2x_coeff(x,v-1); }

INLINE void
F2v_clear(GEN x,long v) { F2x_clear(x,v-1); }

INLINE void
F2v_set(GEN x,long v)   { F2x_set(x,v-1); }

INLINE void
F2v_flip(GEN x,long v) { F2x_flip(x,v-1); }

/* F2m */

INLINE ulong
F2m_coeff(GEN x, long a, long b) { return F2v_coeff(gel(x,b), a); }

INLINE void
F2m_clear(GEN x, long a, long b) { F2v_clear(gel(x,b), a); }

INLINE void
F2m_set(GEN x, long a, long b) { F2v_set(gel(x,b), a); }

INLINE void
F2m_flip(GEN x, long a, long b) { F2v_flip(gel(x,b), a); }

/* ARITHMETIC */
INLINE GEN
matpascal(long n) { return matqpascal(n, NULL); }
INLINE long
Z_issquare(GEN x) { return Z_issquareall(x, NULL); }
INLINE long
Z_ispower(GEN x, ulong k) { return Z_ispowerall(x, k, NULL); }
INLINE GEN
sqrti(GEN x) { return sqrtremi(x,NULL); }
INLINE GEN
gaddgs(GEN y, long s) { return gaddsg(s,y); }
INLINE int
gcmpgs(GEN y, long s) { return -gcmpsg(s,y); }
INLINE int
gequalgs(GEN y, long s) { return gequalsg(s,y); }
INLINE GEN
gmaxsg(long s, GEN y) { return gmaxgs(y,s); }
INLINE GEN
gminsg(long s, GEN y) { return gmings(y,s); }
INLINE GEN
gmulgs(GEN y, long s) { return gmulsg(s,y); }
INLINE GEN
gsubgs(GEN y, long s) { return gaddgs(y, -s); }
INLINE GEN
gdivsg(long s, GEN y) { return gdiv(stoi(s), y); }

/* x t_COMPLEX */
INLINE GEN
cxnorm(GEN x) { return gadd(gsqr(gel(x,1)), gsqr(gel(x,2))); }
/* q t_QUAD */
INLINE GEN
quadnorm(GEN q)
{
  GEN X = gel(q,1), b = gel(X,3), c = gel(X,2);
  GEN z, u = gel(q,3), v = gel(q,2);
  if (typ(u) == t_INT && typ(v) == t_INT) /* generic case */
  {
    z = signe(b)? mulii(v, addii(u,v)): sqri(v);
    return addii(z, mulii(c, sqri(u)));
  }
  else
  {
    z = signe(b)? gmul(v, gadd(u,v)): gsqr(v);
    return gadd(z, gmul(c, gsqr(u)));
  }
}
/* x a t_QUAD, return the attached discriminant */
INLINE GEN
quad_disc(GEN x)
{
  GEN Q = gel(x,1), b = gel(Q,3), c = gel(Q,2), c4;
  if (is_pm1(b))
  {
    pari_sp av = avma; (void)new_chunk(lgefint(c) + 1);
    c4 = shifti(c,2); avma = av; return subsi(1, c4);
  }
  c4 = shifti(c,2); togglesign_safe(&c4); return c4;
}
INLINE GEN
qfb_disc3(GEN x, GEN y, GEN z) { return subii(sqri(y), shifti(mulii(x,z),2)); }
INLINE GEN
qfb_disc(GEN x) { return qfb_disc3(gel(x,1), gel(x,2), gel(x,3)); }

INLINE GEN
sqrfrac(GEN x)
{
  GEN z = cgetg(3,t_FRAC);
  gel(z,1) = sqri(gel(x,1));
  gel(z,2) = sqri(gel(x,2)); return z;
}

INLINE void
normalize_frac(GEN z) {
  if (signe(gel(z,2)) < 0) { togglesign(gel(z,1)); setabssign(gel(z,2)); }
}

INLINE GEN
powii(GEN x, GEN n)
{
  long ln = lgefint(n);
  if (ln == 3) {
    GEN z;
    if (signe(n) > 0) return powiu(x, n[2]);
    z = cgetg(3, t_FRAC);
    gel(z,1) = gen_1;
    gel(z,2) = powiu(x, n[2]);
    return z;
  }
  if (ln == 2) return gen_1; /* rare */
  /* should never happen */
  return powgi(x, n); /* overflow unless x = 0, 1, -1 */
}
INLINE GEN
powIs(long n) {
  switch(n & 3)
  {
    case 1: return mkcomplex(gen_0,gen_1);
    case 2: return gen_m1;
    case 3: return mkcomplex(gen_0,gen_m1);
  }
  return gen_1;
}

/*******************************************************************/
/*                                                                 */
/*                             ASSIGNMENTS                         */
/*                                                                 */
/*******************************************************************/
INLINE void mpexpz(GEN x, GEN z)
{ pari_sp av = avma; gaffect(mpexp(x), z); avma = av; }
INLINE void mplogz(GEN x, GEN z)
{ pari_sp av = avma; gaffect(mplog(x), z); avma = av; }
INLINE void mpcosz(GEN x, GEN z)
{ pari_sp av = avma; gaffect(mpcos(x), z); avma = av; }
INLINE void mpsinz(GEN x, GEN z)
{ pari_sp av = avma; gaffect(mpsin(x), z); avma = av; }
INLINE void gnegz(GEN x, GEN z)
{ pari_sp av = avma; gaffect(gneg(x), z); avma = av; }
INLINE void gabsz(GEN x, long prec, GEN z)
{ pari_sp av = avma; gaffect(gabs(x,prec), z); avma = av; }
INLINE void gaddz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; gaffect(gadd(x,y), z); avma = av; }
INLINE void gsubz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; gaffect(gsub(x,y), z); avma = av; }
INLINE void gmulz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; gaffect(gmul(x,y), z); avma = av; }
INLINE void gdivz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; gaffect(gdiv(x,y), z); avma = av; }
INLINE void gdiventz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; gaffect(gdivent(x,y), z); avma = av; }
INLINE void gmodz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; gaffect(gmod(x,y), z); avma = av; }
INLINE void gmul2nz(GEN x, long s, GEN z)
{ pari_sp av = avma; gaffect(gmul2n(x,s), z); avma = av; }
INLINE void gshiftz(GEN x, long s, GEN z)
{ pari_sp av = avma; gaffect(gshift(x,s), z); avma = av; }

/*******************************************************************/
/*                                                                 */
/*                       ELLIPTIC CURVES                           */
/*                                                                 */
/*******************************************************************/
INLINE GEN ell_get_a1(GEN e) { return gel(e,1); }
INLINE GEN ell_get_a2(GEN e) { return gel(e,2); }
INLINE GEN ell_get_a3(GEN e) { return gel(e,3); }
INLINE GEN ell_get_a4(GEN e) { return gel(e,4); }
INLINE GEN ell_get_a6(GEN e) { return gel(e,5); }
INLINE GEN ell_get_b2(GEN e) { return gel(e,6); }
INLINE GEN ell_get_b4(GEN e) { return gel(e,7); }
INLINE GEN ell_get_b6(GEN e) { return gel(e,8); }
INLINE GEN ell_get_b8(GEN e) { return gel(e,9); }
INLINE GEN ell_get_c4(GEN e) { return gel(e,10); }
INLINE GEN ell_get_c6(GEN e) { return gel(e,11); }
INLINE GEN ell_get_disc(GEN e) { return gel(e,12); }
INLINE GEN ell_get_j(GEN e) { return gel(e,13); }
INLINE long ell_get_type(GEN e) { return mael(e,14,1); }
INLINE GEN ellff_get_field(GEN x) { return gmael(x, 15, 1); }
INLINE GEN ellff_get_a4a6(GEN x)  { return gmael(x, 15, 2); }
INLINE GEN ellQp_get_zero(GEN x) { return gmael(x, 15, 1); }
INLINE long ellQp_get_prec(GEN E) { GEN z = ellQp_get_zero(E); return valp(z); }
INLINE GEN ellQp_get_p(GEN E) { GEN z = ellQp_get_zero(E); return gel(z,2); }
INLINE long ellR_get_prec(GEN x) { return nbits2prec(mael3(x, 15, 1, 1)); }
INLINE long ellR_get_sign(GEN x) { return mael3(x, 15, 1, 2); }
INLINE GEN ellnf_get_nf(GEN x) { return checknf_i(gmael(x,15,1)); }
INLINE GEN ellnf_get_bnf(GEN x) { return checkbnf_i(gmael(x,15,1)); }

INLINE int ell_is_inf(GEN z) { return lg(z) == 2; }
INLINE GEN ellinf(void) { return mkvec(gen_0); }

/*******************************************************************/
/*                                                                 */
/*                    ALGEBRAIC NUMBER THEORY                      */
/*                                                                 */
/*******************************************************************/
INLINE GEN modpr_get_pr(GEN x)  { return gel(x,3); }
INLINE GEN modpr_get_p(GEN x)  { return pr_get_p(modpr_get_pr(x)); }
INLINE GEN modpr_get_T(GEN x)  { return lg(x) == 4? NULL: gel(x,4); }

INLINE GEN pr_get_p(GEN pr)  { return gel(pr,1); }
INLINE GEN pr_get_gen(GEN pr){ return gel(pr,2); }
/* .[2] instead of itos works: e and f are small positive integers */
INLINE long pr_get_e(GEN pr) { return gel(pr,3)[2]; }
INLINE long pr_get_f(GEN pr) { return gel(pr,4)[2]; }
INLINE GEN pr_get_tau(GEN pr){ return gel(pr,5); }
INLINE int
pr_is_inert(GEN P) { return pr_get_f(P) == lg(pr_get_gen(P))-1; }
INLINE GEN
pr_norm(GEN pr) { return powiu(pr_get_p(pr), pr_get_f(pr)); }
INLINE ulong
upr_norm(GEN pr) { return upowuu(pr_get_p(pr)[2], pr_get_f(pr)); }

/* assume nf a genuine nf */
INLINE long
nf_get_varn(GEN nf) { return varn(gel(nf,1)); }
INLINE GEN
nf_get_pol(GEN nf) { return gel(nf,1); }
INLINE long
nf_get_degree(GEN nf) { return degpol( nf_get_pol(nf) ); }
INLINE long
nf_get_r1(GEN nf) { GEN x = gel(nf,2); return itou(gel(x,1)); }
INLINE long
nf_get_r2(GEN nf) { GEN x = gel(nf,2); return itou(gel(x,2)); }
INLINE GEN
nf_get_disc(GEN nf) { return gel(nf,3); }
INLINE GEN
nf_get_index(GEN nf) { return gel(nf,4); }
INLINE GEN
nf_get_M(GEN nf) { return gmael(nf,5,1); }
INLINE GEN
nf_get_G(GEN nf) { return gmael(nf,5,2); }
INLINE GEN
nf_get_roundG(GEN nf) { return gmael(nf,5,3); }
INLINE GEN
nf_get_Tr(GEN nf) { return gmael(nf,5,4); }
INLINE GEN
nf_get_diff(GEN nf) { return gmael(nf,5,5); }
INLINE GEN
nf_get_ramified_primes(GEN nf) { return gmael(nf,5,8); }
INLINE GEN
nf_get_roots(GEN nf) { return gel(nf,6); }
INLINE GEN
nf_get_zk(GEN nf) { return gel(nf,7); }
INLINE GEN
nf_get_invzk(GEN nf) { return gel(nf,8); }
INLINE void
nf_get_sign(GEN nf, long *r1, long *r2)
{
  GEN x = gel(nf,2);
  *r1 = itou(gel(x,1));
  *r2 = itou(gel(x,2));
}

INLINE GEN
abgrp_get_no(GEN x) { return gel(x,1); }
INLINE GEN
abgrp_get_cyc(GEN x) { return gel(x,2); }
INLINE GEN
abgrp_get_gen(GEN x) { return gel(x,3); }
INLINE GEN
bnf_get_nf(GEN bnf) { return gel(bnf,7); }
INLINE GEN
bnf_get_clgp(GEN bnf) { return gmael(bnf,8,1); }
INLINE GEN
bnf_get_no(GEN bnf) { return abgrp_get_no(bnf_get_clgp(bnf)); }
INLINE GEN
bnf_get_cyc(GEN bnf) { return abgrp_get_cyc(bnf_get_clgp(bnf)); }
INLINE GEN
bnf_get_gen(GEN bnf)  { return abgrp_get_gen(bnf_get_clgp(bnf)); }
INLINE GEN
bnf_get_reg(GEN bnf) { return gmael(bnf,8,2); }
INLINE GEN
bnf_get_logfu(GEN bnf) { return gel(bnf,3); }
INLINE GEN
bnf_get_tuU(GEN bnf) { return gmael3(bnf,8,4,2); }
INLINE long
bnf_get_tuN(GEN bnf) { return gmael3(bnf,8,4,1)[2]; }
INLINE GEN
bnf_get_fu(GEN bnf) {
  GEN fu = bnf_get_fu_nocheck(bnf);
  if (typ(fu) == t_MAT) pari_err(e_MISC,"missing units in bnf");
  return fu;
}
INLINE GEN
bnf_get_fu_nocheck(GEN bnf) { return gmael(bnf,8,5); }

INLINE GEN
bnr_get_bnf(GEN bnr) { return gel(bnr,1); }
INLINE GEN
bnr_get_bid(GEN bnr) { return gel(bnr,2); }
INLINE GEN
bnr_get_mod(GEN bnr) { return gmael(bnr,2,1); }
INLINE GEN
bnr_get_nf(GEN bnr) { return gmael(bnr,1,7); }
INLINE GEN
bnr_get_clgp(GEN bnr) { return gel(bnr,5); }
INLINE GEN
bnr_get_no(GEN bnr) { return abgrp_get_no(bnr_get_clgp(bnr)); }
INLINE GEN
bnr_get_cyc(GEN bnr) { return abgrp_get_cyc(bnr_get_clgp(bnr)); }
INLINE GEN
bnr_get_gen_nocheck(GEN bnr) { return abgrp_get_gen(bnr_get_clgp(bnr)); }
INLINE GEN
bnr_get_gen(GEN bnr) {
  GEN G = bnr_get_clgp(bnr);
  if (lg(G) !=  4)
    pari_err(e_MISC,"missing bnr generators: please use bnrinit(,,1)");
  return gel(G,3);
}

INLINE GEN
bid_get_mod(GEN bid) { return gel(bid,1); }
INLINE GEN
bid_get_ideal(GEN bid) { return gmael(bid,1,1); }
INLINE GEN
bid_get_arch(GEN bid) { return gmael(bid,1,2); }
INLINE GEN
bid_get_grp(GEN bid) { return gel(bid,2); }
INLINE GEN
bid_get_fact(GEN bid) { return gel(bid,3); }
INLINE GEN
bid_get_sprk(GEN bid) { return gmael(bid,4,1); }
INLINE GEN
bid_get_sarch(GEN bid) { return gmael(bid,4,2); }
INLINE GEN
bid_get_archp(GEN bid) { return gmael3(bid,4,2,4); }
INLINE GEN
bid_get_ind(GEN bid) { return gmael(bid,4,3); }
INLINE GEN
bid_get_U(GEN bid) { return gel(bid,5); }
INLINE GEN
bid_get_no(GEN bid) { return abgrp_get_no(bid_get_grp(bid)); }
INLINE GEN
bid_get_cyc(GEN bid) { return abgrp_get_cyc(bid_get_grp(bid)); }
INLINE GEN
bid_get_gen_nocheck(GEN bid)  { return abgrp_get_gen(bid_get_grp(bid)); }
INLINE GEN
bid_get_gen(GEN bid) {
  GEN G = bid_get_grp(bid);
  if (lg(G) != 4) pari_err(e_MISC,"missing bid generators. Use idealstar(,,2)");
  return abgrp_get_gen(G);
}
INLINE GEN
gal_get_pol(GEN gal) { return gel(gal,1); }
INLINE GEN
gal_get_p(GEN gal) { return gmael(gal,2,1); }
INLINE GEN
gal_get_e(GEN gal) { return gmael(gal,2,2); }
INLINE GEN
gal_get_mod(GEN gal) { return gmael(gal,2,3); }
INLINE GEN
gal_get_roots(GEN gal) { return gel(gal,3); }
INLINE GEN
gal_get_invvdm(GEN gal) { return gel(gal,4); }
INLINE GEN
gal_get_den(GEN gal) { return gel(gal,5); }
INLINE GEN
gal_get_group(GEN gal) { return gel(gal,6); }
INLINE GEN
gal_get_gen(GEN gal) { return gel(gal,7); }
INLINE GEN
gal_get_orders(GEN gal) { return gel(gal,8); }

/* assume rnf a genuine rnf */
INLINE long
rnf_get_degree(GEN rnf) { return degpol(rnf_get_pol(rnf)); }
INLINE long
rnf_get_nfdegree(GEN rnf) { return degpol(nf_get_pol(rnf_get_nf(rnf))); }
INLINE long
rnf_get_absdegree(GEN rnf) { return degpol(gmael(rnf,11,1)); }
INLINE GEN
rnf_get_idealdisc(GEN rnf) { return gmael(rnf,3,1); }
INLINE GEN
rnf_get_k(GEN rnf) { return gmael(rnf,11,3); }
INLINE GEN
rnf_get_alpha(GEN rnf) { return gmael(rnf, 11, 2); }
INLINE GEN
rnf_get_nf(GEN rnf) { return gel(rnf,10); }
INLINE void
rnf_get_nfzk(GEN rnf, GEN *b, GEN *cb) {*b=gmael(rnf,2,1); *cb=gmael(rnf,2,2);}
INLINE GEN
rnf_get_polabs(GEN rnf) { return gmael(rnf,11,1); }
INLINE GEN
rnf_get_pol(GEN rnf) { return gel(rnf,1); }
INLINE GEN
rnf_get_disc(GEN rnf) { return gel(rnf,3); }
INLINE GEN
rnf_get_index(GEN rnf) { return gel(rnf,4); }
INLINE long
rnf_get_varn(GEN rnf) { return varn(gel(rnf,1)); }
INLINE GEN
rnf_get_nfpol(GEN rnf) { return gmael(rnf,10,1); }
INLINE long
rnf_get_nfvarn(GEN rnf) { return varn(gmael(rnf,10,1)); }
INLINE GEN
rnf_get_zk(GEN rnf) { return gel(rnf,7); }
INLINE GEN
rnf_get_map(GEN rnf) { return gel(rnf,11); }
INLINE GEN
rnf_get_invzk(GEN rnf) { return gel(rnf,8); }

/* I integral ZM (not HNF), G ZM, rounded Cholesky form of a weighted
 * T2 matrix. Reduce I wrt G */
INLINE GEN
idealpseudored(GEN I, GEN G)
{ return ZM_mul(I, ZM_lll(ZM_mul(G, I), 0.99, LLL_IM)); }

/* I integral (not necessarily HNF), G ZM, rounded Cholesky form of a weighted
 * T2 matrix. Return m in I with T2(m) small */
INLINE GEN
idealpseudomin(GEN I, GEN G)
{
  GEN u = ZM_lll(ZM_mul(G, I), 0.99, LLL_IM);
  return ZM_ZC_mul(I, gel(u,1));
}
/* I, G as in idealpseudomin. Return an irrational m in I with T2(m) small */
INLINE GEN
idealpseudomin_nonscalar(GEN I, GEN G)
{
  GEN u = ZM_lll(ZM_mul(G, I), 0.99, LLL_IM);
  GEN m = ZM_ZC_mul(I, gel(u,1));
  if (ZV_isscalar(m) && lg(u) > 2) m = ZM_ZC_mul(I, gel(u,2));
  return m;
}

INLINE GEN
idealred_elt(GEN nf, GEN I) {
  pari_sp av = avma;
  GEN u = idealpseudomin(I, nf_get_roundG(nf));
  return gerepileupto(av, u);
}
INLINE GEN
idealred(GEN nf, GEN I) { return idealred0(nf, I, NULL); }

INLINE GEN
idealchineseinit(GEN nf, GEN x)
{ return idealchinese(nf,x,NULL); }

/*******************************************************************/
/*                                                                 */
/*                              CLOSURES                           */
/*                                                                 */
/*******************************************************************/
INLINE long closure_arity(GEN C)          { return ((ulong)C[1])&ARITYBITS; }
INLINE long closure_is_variadic(GEN C) { return !!(((ulong)C[1])&VARARGBITS); }
INLINE const char *closure_codestr(GEN C)  { return GSTR(gel(C,2))-1; }
INLINE GEN closure_get_code(GEN C)  { return gel(C,2); }
INLINE GEN closure_get_oper(GEN C)  { return gel(C,3); }
INLINE GEN closure_get_data(GEN C)  { return gel(C,4); }
INLINE GEN closure_get_dbg(GEN C)   { return gel(C,5); }
INLINE GEN closure_get_text(GEN C)  { return gel(C,6); }
INLINE GEN closure_get_frame(GEN C) { return gel(C,7); }

/*******************************************************************/
/*                                                                 */
/*                               ERRORS                            */
/*                                                                 */
/*******************************************************************/
INLINE long
err_get_num(GEN e) { return e[1]; }
INLINE GEN
err_get_compo(GEN e, long i) { return gel(e, i+1); }

INLINE void
pari_err_BUG(const char *f) { pari_err(e_BUG,f); }
INLINE void
pari_err_CONSTPOL(const char *f) { pari_err(e_CONSTPOL, f); }
INLINE void
pari_err_COPRIME(const char *f, GEN x, GEN y) { pari_err(e_COPRIME, f,x,y); }
INLINE void
pari_err_DIM(const char *f) { pari_err(e_DIM, f); }
INLINE void
pari_err_FILE(const char *f, const char *g) { pari_err(e_FILE, f,g); }
INLINE void
pari_err_FLAG(const char *f) { pari_err(e_FLAG,f); }
INLINE void
pari_err_IMPL(const char *f) { pari_err(e_IMPL,f); }
INLINE void
pari_err_INV(const char *f, GEN x) { pari_err(e_INV,f,x); }
INLINE void
pari_err_IRREDPOL(const char *f, GEN x) { pari_err(e_IRREDPOL, f,x); }
INLINE void
pari_err_DOMAIN(const char *f, const char *v, const char *op, GEN l, GEN x) { pari_err(e_DOMAIN, f,v,op,l,x); }
INLINE void
pari_err_COMPONENT(const char *f, const char *op, GEN l, GEN x) { pari_err(e_COMPONENT, f,op,l,x); }
INLINE void
pari_err_MAXPRIME(ulong c) { pari_err(e_MAXPRIME, c); }
INLINE void
pari_err_OP(const char *f, GEN x, GEN y) { pari_err(e_OP, f,x,y); }
INLINE void
pari_err_OVERFLOW(const char *f) { pari_err(e_OVERFLOW, f); }
INLINE void
pari_err_PREC(const char *f) { pari_err(e_PREC,f); }
INLINE void
pari_err_PACKAGE(const char *f) { pari_err(e_PACKAGE,f); }
INLINE void
pari_err_PRIME(const char *f, GEN x) { pari_err(e_PRIME, f,x); }
INLINE void
pari_err_MODULUS(const char *f, GEN x, GEN y) { pari_err(e_MODULUS, f,x,y); }
INLINE void
pari_err_ROOTS0(const char *f) { pari_err(e_ROOTS0, f); }
INLINE void
pari_err_SQRTN(const char *f, GEN x) { pari_err(e_SQRTN, f,x); }
INLINE void
pari_err_TYPE(const char *f, GEN x) { pari_err(e_TYPE, f,x); }
INLINE void
pari_err_TYPE2(const char *f, GEN x, GEN y) { pari_err(e_TYPE2, f,x,y); }
INLINE void
pari_err_VAR(const char *f, GEN x, GEN y) { pari_err(e_VAR, f,x,y); }
INLINE void
pari_err_PRIORITY(const char *f, GEN x, const char *op, long v)
{ pari_err(e_PRIORITY, f,x,op,v); }