This file is indexed.

/usr/include/OTB-5.8/otbTrainNeuralNetwork.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*=========================================================================
 Program:   ORFEO Toolbox
 Language:  C++
 Date:      $Date$
 Version:   $Revision$


 Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
 See OTBCopyright.txt for details.


 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.

 =========================================================================*/
#ifndef otbTrainNeuralNetwork_txx
#define otbTrainNeuralNetwork_txx
#include <boost/lexical_cast.hpp>
#include "otbLearningApplicationBase.h"

namespace otb
{
namespace Wrapper
{

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitNeuralNetworkParams()
{
  AddChoice("classifier.ann", "Artificial Neural Network classifier");
  SetParameterDescription("classifier.ann",
                          "This group of parameters allows setting Artificial Neural Network classifier parameters. "
                          "See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/neural_networks.html}.");

  //TrainMethod
  AddParameter(ParameterType_Choice, "classifier.ann.t", "Train Method Type");
  AddChoice("classifier.ann.t.reg", "RPROP algorithm");
  AddChoice("classifier.ann.t.back", "Back-propagation algorithm");
  SetParameterString("classifier.ann.t", "reg");
  SetParameterDescription("classifier.ann.t", "Type of training method for the multilayer perceptron (MLP) neural network.");

  //LayerSizes
  //There is no ParameterType_IntList, so i use a ParameterType_StringList and convert it.
  /*std::vector<std::string> layerSizes;
   layerSizes.push_back("100");
   layerSizes.push_back("100"); */
  AddParameter(ParameterType_StringList, "classifier.ann.sizes", "Number of neurons in each intermediate layer");
  //SetParameterStringList("classifier.ann.sizes", layerSizes);
  SetParameterDescription("classifier.ann.sizes",
                          "The number of neurons in each intermediate layer (excluding input and output layers).");

  //ActivateFunction
  AddParameter(ParameterType_Choice, "classifier.ann.f", "Neuron activation function type");
  AddChoice("classifier.ann.f.ident", "Identity function");
  AddChoice("classifier.ann.f.sig", "Symmetrical Sigmoid function");
  AddChoice("classifier.ann.f.gau", "Gaussian function (Not completely supported)");
  SetParameterString("classifier.ann.f", "sig");
  SetParameterDescription("classifier.ann.f", "Neuron activation function.");

  //Alpha
  AddParameter(ParameterType_Float, "classifier.ann.a", "Alpha parameter of the activation function");
  SetParameterFloat("classifier.ann.a", 1.);
  SetParameterDescription("classifier.ann.a",
                          "Alpha parameter of the activation function (used only with sigmoid and gaussian functions).");

  //Beta
  AddParameter(ParameterType_Float, "classifier.ann.b", "Beta parameter of the activation function");
  SetParameterFloat("classifier.ann.b", 1.);
  SetParameterDescription("classifier.ann.b",
                          "Beta parameter of the activation function (used only with sigmoid and gaussian functions).");

  //BackPropDWScale
  AddParameter(ParameterType_Float, "classifier.ann.bpdw",
               "Strength of the weight gradient term in the BACKPROP method");
  SetParameterFloat("classifier.ann.bpdw", 0.1);
  SetParameterDescription(
      "classifier.ann.bpdw",
      "Strength of the weight gradient term in the BACKPROP method. The recommended value is about 0.1.");

  //BackPropMomentScale
  AddParameter(ParameterType_Float, "classifier.ann.bpms",
               "Strength of the momentum term (the difference between weights on the 2 previous iterations)");
  SetParameterFloat("classifier.ann.bpms", 0.1);
  SetParameterDescription(
      "classifier.ann.bpms",
      "Strength of the momentum term (the difference between weights on the 2 previous iterations). "
      "This parameter provides some inertia to smooth the random fluctuations of the weights. "
      "It can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.");

  //RegPropDW0
  AddParameter(ParameterType_Float, "classifier.ann.rdw",
               "Initial value Delta_0 of update-values Delta_{ij} in RPROP method");
  SetParameterFloat("classifier.ann.rdw", 0.1);
  SetParameterDescription("classifier.ann.rdw", "Initial value Delta_0 of update-values Delta_{ij} in RPROP method (default = 0.1).");

  //RegPropDWMin
  AddParameter(ParameterType_Float, "classifier.ann.rdwm", "Update-values lower limit Delta_{min} in RPROP method");
  SetParameterFloat("classifier.ann.rdwm", 1e-7);
  SetParameterDescription(
      "classifier.ann.rdwm",
      "Update-values lower limit Delta_{min} in RPROP method. It must be positive (default = 1e-7).");

  //TermCriteriaType
  AddParameter(ParameterType_Choice, "classifier.ann.term", "Termination criteria");
  AddChoice("classifier.ann.term.iter", "Maximum number of iterations");
  AddChoice("classifier.ann.term.eps", "Epsilon");
  AddChoice("classifier.ann.term.all", "Max. iterations + Epsilon");
  SetParameterString("classifier.ann.term", "all");
  SetParameterDescription("classifier.ann.term", "Termination criteria.");

  //Epsilon
  AddParameter(ParameterType_Float, "classifier.ann.eps", "Epsilon value used in the Termination criteria");
  SetParameterFloat("classifier.ann.eps", 0.01);
  SetParameterDescription("classifier.ann.eps", "Epsilon value used in the Termination criteria.");

  //MaxIter
  AddParameter(ParameterType_Int, "classifier.ann.iter",
               "Maximum number of iterations used in the Termination criteria");
  SetParameterInt("classifier.ann.iter", 1000);
  SetParameterDescription("classifier.ann.iter", "Maximum number of iterations used in the Termination criteria.");

}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainNeuralNetwork(typename ListSampleType::Pointer trainingListSample,
                     typename TargetListSampleType::Pointer trainingLabeledListSample,
                     std::string modelPath)
{
  typename NeuralNetworkType::Pointer classifier = NeuralNetworkType::New();
  classifier->SetRegressionMode(this->m_RegressionFlag);
  classifier->SetInputListSample(trainingListSample);
  classifier->SetTargetListSample(trainingLabeledListSample);

  switch (GetParameterInt("classifier.ann.t"))
    {
    case 0: // RPROP
      classifier->SetTrainMethod(CvANN_MLP_TrainParams::RPROP);
      break;
    case 1: // BACKPROP
      classifier->SetTrainMethod(CvANN_MLP_TrainParams::BACKPROP);
      break;
    default: // DEFAULT = RPROP
      classifier->SetTrainMethod(CvANN_MLP_TrainParams::RPROP);
      break;
    }

  std::vector<unsigned int> layerSizes;
  std::vector<std::string> sizes = GetParameterStringList("classifier.ann.sizes");


  unsigned int nbImageBands = trainingListSample->GetMeasurementVectorSize();
  layerSizes.push_back(nbImageBands);
  for (unsigned int i = 0; i < sizes.size(); i++)
    {
    unsigned int nbNeurons = boost::lexical_cast<unsigned int>(sizes[i]);
    layerSizes.push_back(nbNeurons);
    }


  unsigned int nbClasses = 0;
  if (this->m_RegressionFlag)
    {
    layerSizes.push_back(1);
    }
  else
    {
    std::set<TargetValueType> labelSet;
    TargetSampleType currentLabel;
    for (unsigned int itLab = 0; itLab < trainingLabeledListSample->Size(); ++itLab)
      {
      currentLabel = trainingLabeledListSample->GetMeasurementVector(itLab);
      labelSet.insert(currentLabel[0]);
      }
    nbClasses = labelSet.size();
    layerSizes.push_back(nbClasses);
    }

  classifier->SetLayerSizes(layerSizes);

  switch (GetParameterInt("classifier.ann.f"))
    {
    case 0: // ident
      classifier->SetActivateFunction(CvANN_MLP::IDENTITY);
      break;
    case 1: // sig
      classifier->SetActivateFunction(CvANN_MLP::SIGMOID_SYM);
      break;
    case 2: // gaussian
      classifier->SetActivateFunction(CvANN_MLP::GAUSSIAN);
      break;
    default: // DEFAULT = RPROP
      classifier->SetActivateFunction(CvANN_MLP::SIGMOID_SYM);
      break;
    }

  classifier->SetAlpha(GetParameterFloat("classifier.ann.a"));
  classifier->SetBeta(GetParameterFloat("classifier.ann.b"));
  classifier->SetBackPropDWScale(GetParameterFloat("classifier.ann.bpdw"));
  classifier->SetBackPropMomentScale(GetParameterFloat("classifier.ann.bpms"));
  classifier->SetRegPropDW0(GetParameterFloat("classifier.ann.rdw"));
  classifier->SetRegPropDWMin(GetParameterFloat("classifier.ann.rdwm"));

  switch (GetParameterInt("classifier.ann.term"))
    {
    case 0: // CV_TERMCRIT_ITER
      classifier->SetTermCriteriaType(CV_TERMCRIT_ITER);
      break;
    case 1: // CV_TERMCRIT_EPS
      classifier->SetTermCriteriaType(CV_TERMCRIT_EPS);
      break;
    case 2: // CV_TERMCRIT_ITER + CV_TERMCRIT_EPS
      classifier->SetTermCriteriaType(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS);
      break;
    default: // DEFAULT = CV_TERMCRIT_ITER + CV_TERMCRIT_EPS
      classifier->SetTermCriteriaType(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS);
      break;
    }
  classifier->SetEpsilon(GetParameterFloat("classifier.ann.eps"));
  classifier->SetMaxIter(GetParameterInt("classifier.ann.iter"));
  classifier->Train();
  classifier->Save(modelPath);
}

} //end namespace wrapper
} //end namespace otb

#endif