This file is indexed.

/usr/include/OTB-5.8/otbTrainKNN.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/*=========================================================================
 Program:   ORFEO Toolbox
 Language:  C++
 Date:      $Date$
 Version:   $Revision$


 Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
 See OTBCopyright.txt for details.


 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.

 =========================================================================*/
#ifndef otbTrainKNN_txx
#define otbTrainKNN_txx
#include "otbLearningApplicationBase.h"

namespace otb
{
namespace Wrapper
{

  template <class TInputValue, class TOutputValue>
  void
  LearningApplicationBase<TInputValue,TOutputValue>
  ::InitKNNParams()
  {
    AddChoice("classifier.knn", "KNN classifier");
    SetParameterDescription("classifier.knn", "This group of parameters allows setting KNN classifier parameters. "
        "See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/k_nearest_neighbors.html}.");

    //K parameter
    AddParameter(ParameterType_Int, "classifier.knn.k", "Number of Neighbors");
    SetParameterInt("classifier.knn.k", 32);
    SetParameterDescription("classifier.knn.k","The number of neighbors to use.");

    if (this->m_RegressionFlag)
      {
      // Decision rule : mean / median
      AddParameter(ParameterType_Choice, "classifier.knn.rule", "Decision rule");
      SetParameterDescription("classifier.knn.rule", "Decision rule for regression output");

      AddChoice("classifier.knn.rule.mean", "Mean of neighbors values");
      SetParameterDescription("classifier.knn.rule.mean","Returns the mean of neighbors values");

      AddChoice("classifier.knn.rule.median", "Median of neighbors values");
      SetParameterDescription("classifier.knn.rule.median","Returns the median of neighbors values");
      }
  }

  template <class TInputValue, class TOutputValue>
  void
  LearningApplicationBase<TInputValue,TOutputValue>
  ::TrainKNN(typename ListSampleType::Pointer trainingListSample,
             typename TargetListSampleType::Pointer trainingLabeledListSample,
             std::string modelPath)
  {
    typename KNNType::Pointer knnClassifier = KNNType::New();
    knnClassifier->SetRegressionMode(this->m_RegressionFlag);
    knnClassifier->SetInputListSample(trainingListSample);
    knnClassifier->SetTargetListSample(trainingLabeledListSample);
    knnClassifier->SetK(GetParameterInt("classifier.knn.k"));
    if (this->m_RegressionFlag)
      {
      std::string decision = this->GetParameterString("classifier.knn.rule");
      if (decision == "mean")
        {
        knnClassifier->SetDecisionRule(KNNType::KNN_MEAN);
        }
      else if (decision == "median")
        {
        knnClassifier->SetDecisionRule(KNNType::KNN_MEDIAN);
        }
      }

    knnClassifier->Train();
    knnClassifier->Save(modelPath);
  }

} //end namespace wrapper
} //end namespace otb

#endif