/usr/include/OTB-5.8/otbSinclairToMuellerMatrixFunctor.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbSinclairToMuellerMatrixFunctor_h
#define otbSinclairToMuellerMatrixFunctor_h
#include "vcl_complex.h"
namespace otb
{
namespace Functor
{
/** \class SinclairToMuellerMatrixFunctor
* \brief Construct Mueller matrix with Sinclair matrix information.
* Elements of the Mueller matrix are extract from Antennas for radar and communications
* Harold Mott p 503
*
* Output value are:
* - channel #0 : \f$ 0.5 * \mathcal{Re}( T_{xx}.T_{xx}^{*} + T_{xy}.T_{xy}^{*} + T_{yx}.T_{yx}^{*} + T_{yy}.T_{yy}^{*} ) \f$
* - channel #1 : \f$ 0.5 * \mathcal{Re}( T_{xx}.T_{xx}^{*} - T_{xy}.T_{xy}^{*} + T_{yx}.T_{yx}^{*} - T_{yy}.T_{yy}^{*} ) \f$
* - channel #2 : \f$ \mathcal{Re}( T_{xx}.T_{xy}^{*} + T_{yx}.T_{yy}^{*} ) \f$
* - channel #3 : \f$ \mathcal{Im}( T_{xx}.T_{xy}^{*} + T_{yx}.T_{yy}^{*} ) \f$
* - channel #4 : \f$ 0.5 * \mathcal{Re}( T_{xx}.T_{xx}^{*} + T_{xy}.T_{xy}^{*} - T_{yx}.T_{yx}^{*} - T_{yy}.T_{yy}^{*} ) \f$
* - channel #5 : \f$ 0.5 * \mathcal{Re}( T_{xx}.T_{xx}^{*} - T_{xy}.T_{xy}^{*} - T_{yx}.T_{yx}^{*} + T_{yy}.T_{yy}^{*} ) \f$
* - channel #6 : \f$ \mathcal{Re}( T_{xx}.T_{xy}^{*} - T_{yx}.T_{yy}^{*} ) \f$
* - channel #7 : \f$ \mathcal{Im}( T_{xx}.T_{xy}^{*} - T_{yx}.T_{yy}^{*} ) \f$
* - channel #8 : \f$ \mathcal{Re}( T_{xx}.T_{yx}^{*} + T_{xy}.T_{yy}^{*} ) \f$
* - channel #9 : \f$ \mathcal{Im}( T_{xx}.T_{yx}^{*} - T_{xy}.T_{yy}^{*} ) \f$
* - channel #10 : \f$ \mathcal{Re}( T_{xx}.T_{yy}^{*} + T_{xy}.T_{yx}^{*} ) \f$
* - channel #11 : \f$ \mathcal{Im}( T_{xx}.T_{yy}^{*} - T_{xy}.T_{yx}^{*} ) \f$
* - channel #12 : \f$ \mathcal{Re}( T_{xx}.T_{yx}^{*} + T_{xy}.T_{yy}^{*} ) \f$
* - channel #13 : \f$ \mathcal{Im}( T_{xx}.T_{yx}^{*} - T_{xy}.T_{yy}^{*} ) \f$
* - channel #14 : \f$ \mathcal{Re}( T_{xx}.T_{yy}^{*} + T_{xy}.T_{yx}^{*} ) \f$
* - channel #15 : \f$ \mathcal{Im}( T_{xx}.T_{yy}^{*} - T_{xy}.T_{yx}^{*} ) \f$
*
* With :
* - \f$ T_{xx} = -S_{hh} \f$
* - \f$ T_{xy} = -S_{hv} \f$
* - \f$ T_{yx} = S_{vh} \f$
* - \f$ T_{yy} = S_{vv} \f$
*
* Output is a not a complex. The output pixel has 16 channels : each element of the Mueller matrix.
* The order of the channels corresponds to :
* \f$ \begin{pmatrix}
* {channel #0 }&{channel #1 }&{channel #2 }&{channel #3 } \\
* {channel #4 }&{channel #5 }&{channel #6 }&{channel #7 } \\
* {channel #8 }&{channel #9 }&{channel #10}&{channel #11} \\
* {channel #12}&{channel #13}&{channel #14}&{channel #15} \\
* \end{pmatrix} \f$
*
* \ingroup Functor
* \ingroup SARPolarimetry
*
* \sa SinclairImageFilter
* \sa SinclairToCircularCovarianceMatrixFunctor
* \sa SinclairToCoherencyMatrixFunctor
* \sa SinclairToCovarianceMatrixFunctor
* \sa SinclairToReciprocalCircularCovarianceMatrixFunctor
* \sa SinclairToReciprocalCoherencyMatrixFunctor
* \sa SinclairToReciprocalCovarianceMatrixFunctor
*
*
* \ingroup OTBPolarimetry
*/
template <class TInput1, class TInput2, class TInput3,
class TInput4, class TOutput>
class SinclairToMuellerMatrixFunctor
{
public:
/** Some typedefs. */
typedef typename std::complex <double> ComplexType;
typedef typename TOutput::ValueType OutputValueType;
typedef double RealType;
inline TOutput operator ()(const TInput1& Shh, const TInput2& Shv,
const TInput3& Svh, const TInput4& Svv)
{
TOutput result;
result.SetSize(m_NumberOfComponentsPerPixel);
const ComplexType Txx = static_cast<ComplexType>(-Shh);
const ComplexType Txy = static_cast<ComplexType>(-Shv);
const ComplexType Tyx = static_cast<ComplexType>(Svh);
const ComplexType Tyy = static_cast<ComplexType>(Svv);
const ComplexType conjTxx = vcl_conj(Txx);
const ComplexType conjTxy = vcl_conj(Txy);
const ComplexType conjTyx = vcl_conj(Tyx);
const ComplexType conjTyy = vcl_conj(Tyy);
result[0] = static_cast<OutputValueType>( 0.5 * ( std::norm(Txx) + std::norm(Txy) + std::norm(Tyx) + std::norm(Tyy) ) );
result[1] = static_cast<OutputValueType>( 0.5 * ( std::norm(Txx) - std::norm(Txy) + std::norm(Tyx) - std::norm(Tyy) ) );
result[2] = static_cast<OutputValueType>( (Txx*conjTxy + Tyx*conjTyy).real() );
result[3] = static_cast<OutputValueType>( (Txx*conjTxy + Tyx*conjTyy).imag() );
result[4] = static_cast<OutputValueType>( 0.5 * (std::norm(Txx) + std::norm(Txy) - std::norm(Tyx) - std::norm(Tyy) ) );
result[5] = static_cast<OutputValueType>( 0.5 * (std::norm(Txx) - std::norm(Txy) - std::norm(Tyx) + std::norm(Tyy) ) );
result[6] = static_cast<OutputValueType>( (Txx*conjTxy - Tyx*conjTyy).real() );
result[7] = static_cast<OutputValueType>( (Txx*conjTxy - Tyx*conjTyy).imag() );
result[8] = static_cast<OutputValueType>( (Txx*conjTyx + Txy*conjTyy).real() );
result[9] = static_cast<OutputValueType>( (Txx*conjTyx - Txy*conjTyy).real() );
result[10] = static_cast<OutputValueType>( (Txx*conjTyy + Txy*conjTyx).real() );
result[11] = static_cast<OutputValueType>( (Txx*conjTyy - Txy*conjTyx).imag() );
result[12] = static_cast<OutputValueType>( (conjTxx*Tyx + conjTxy*Tyy).imag() );
result[13] = static_cast<OutputValueType>( (conjTxx*Tyx - conjTxy*Tyy).imag() );
result[14] = static_cast<OutputValueType>( (conjTxx*Tyy + conjTxy*Tyx).imag() );
result[15] = static_cast<OutputValueType>( (Txx*conjTyy - Txy*conjTyx).real() );
return (result);
}
unsigned int GetNumberOfComponentsPerPixel()
{
return m_NumberOfComponentsPerPixel;
}
/** Constructor */
SinclairToMuellerMatrixFunctor() : m_NumberOfComponentsPerPixel(16) {}
/** Destructor */
virtual ~SinclairToMuellerMatrixFunctor() {}
protected:
private:
unsigned int m_NumberOfComponentsPerPixel;
};
} // namespace Functor
} // namespace otb
#endif
|