This file is indexed.

/usr/include/OTB-5.8/otbSarRadiometricCalibrationFunction.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef otbSarRadiometricCalibrationFunction_txx
#define otbSarRadiometricCalibrationFunction_txx

#include "otbSarRadiometricCalibrationFunction.h"
#include "itkNumericTraits.h"

namespace otb
{
/**
 * Constructor
 */
template <class TInputImage, class TCoordRep>
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::SarRadiometricCalibrationFunction()
: m_Scale(1.0)
, m_EnableNoise(false)
, m_RescalingFactor(1.0)
, m_ApplyAntennaPatternGain(true)
, m_ApplyIncidenceAngleCorrection(true)
, m_ApplyRangeSpreadLossCorrection(true)
, m_ApplyLookupDataCorrection(false)
, m_ApplyRescalingFactor(false)

{
  /* initialize parametric functions */
  m_Noise = ParametricFunctionType::New();
  m_AntennaPatternNewGain = ParametricFunctionType::New();
  m_AntennaPatternOldGain = ParametricFunctionType::New();
  m_IncidenceAngle = ParametricFunctionType::New();
  m_RangeSpreadLoss = ParametricFunctionType::New();

  /* initialize default values in paramerticFunction instances  */
  m_Noise->SetConstantValue(0.0);
  m_AntennaPatternNewGain->SetConstantValue(1.0);
  m_AntennaPatternOldGain->SetConstantValue(1.0);
  m_IncidenceAngle->SetConstantValue(CONST_PI_2);
  m_RangeSpreadLoss->SetConstantValue(1.0);

//  m_Lut = 0; //new LookupTableBase();

}

/**
 * Initialize by setting the input image
 */
template <class TInputImage, class TCoordRep>
void
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::SetInputImage(
  const InputImageType * ptr )
{
  Superclass::SetInputImage(ptr);
  m_Noise->SetInputImage(ptr);
  m_IncidenceAngle->SetInputImage(ptr);
  m_AntennaPatternNewGain->SetInputImage(ptr);
  m_AntennaPatternOldGain->SetInputImage(ptr);
  m_RangeSpreadLoss->SetInputImage(ptr);
}

/**
 * Print
 */
template <class TInputImage, class TCoordRep>
void
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
}

/* Function: EvaluateAtIndex. This computes the required values for each pixel
* whose index is given in indexType argument. To convert index to point it uses
* InputImage::TransformIndexToPhysicalPoint(). IncidenceAngle and similar are
* computed based on this calculated point in SarParametricFunction   */
template <class TInputImage, class TCoordRep>
typename SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::OutputType
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::EvaluateAtIndex(const IndexType& index) const
{

  if (!this->IsInsideBuffer(index))
    {
    itkDebugMacro( << "ERROR with IsInsideBuffer");
    return (itk::NumericTraits<OutputType>::max());
    }

  /* convert index to point */
  PointType point;
  if (m_ApplyAntennaPatternGain || m_ApplyIncidenceAngleCorrection || m_ApplyRangeSpreadLossCorrection)
    this->GetInputImage()->TransformIndexToPhysicalPoint( index, point);

  /** digitalNumber:
    * For complex pixel type, vcl_abs() returns the modulus. which is
    * sqrt((I*I) + (Q*Q)). Where I and Q are real and imaginary part of the
    * complex pixel. So to to get (I*I) + (Q*Q) in our calculation, the output
    * of vcl_abs() is squared. See below (digitalNumber * digitalNumber) where
    * digitalNumber is the output of vcl_abs() which is sqrt((I*I) + (Q*Q)). For
    * non-complex pixel types, vcl_abs() simply returns absolute value.
    */

	const std::complex<float> pVal = this->GetInputImage()->GetPixel(index);
	const RealType digitalNumber = std::sqrt((pVal.real() * pVal.real()) + (pVal.imag()* pVal.imag()));

  RealType sigma = m_Scale * digitalNumber * digitalNumber;

  /** subtract noise if enabled. */
  if (m_EnableNoise)
    {
    sigma  -= static_cast<RealType>(m_Noise->Evaluate(point));
    }

  /** Apply incidence angle correction if needed */
  if (m_ApplyIncidenceAngleCorrection)
    {
    sigma *= vcl_sin(static_cast<RealType>(m_IncidenceAngle->Evaluate(point)));
    }

  /** Apply old and new antenna pattern gain. */
  if (m_ApplyAntennaPatternGain)
    {
    sigma *= static_cast<RealType>(m_AntennaPatternNewGain->Evaluate(point));
    sigma /= static_cast<RealType>(m_AntennaPatternOldGain->Evaluate(point));
    }

  /** Apply range spread loss if needed. */
  if (m_ApplyRangeSpreadLossCorrection)
    {
    sigma *= static_cast<RealType>(m_RangeSpreadLoss->Evaluate(point));
    }

  /** Lookup value has effect on for some sensors which does not required the
    * above values (incidence angle, rangespreadloss etc.. */
  if (m_ApplyLookupDataCorrection)
    {
    RealType lutVal = static_cast<RealType>(m_Lut->GetValue(index[0], index[1]));
    sigma /= lutVal * lutVal;
    }

  /** rescaling factor has effect only with CosmoSkymed Products */
  if (m_ApplyRescalingFactor)
    {
    sigma /= m_RescalingFactor;
    }

  if(sigma < 0.0)
    {
    sigma = 0.0;
    }

  return static_cast<OutputType>(sigma);
}

} // end namespace otb

#endif