This file is indexed.

/usr/include/OTB-5.8/otbSarParametricMapFunction.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef otbSarParametricMapFunction_txx
#define otbSarParametricMapFunction_txx

#include "otbSarParametricMapFunction.h"
#include "itkNumericTraits.h"

#include "itkMetaDataObject.h"
#include "otbMetaDataKey.h"
#include "otbImageKeywordlist.h"

#include <vnl/algo/vnl_svd.h>

namespace otb
{

/**
 * Constructor
 */
template <class TInputImage, class TCoordRep>
SarParametricMapFunction<TInputImage, TCoordRep>
::SarParametricMapFunction()
 : m_PointSet(PointSetType::New()),
   m_IsInitialize(false),
   m_ProductWidth(0),
   m_ProductHeight(0)
{
  m_Coeff.SetSize(1, 1);
  m_Coeff.Fill(0);
}

template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::SetConstantValue(const RealType& value)
{
  PointType  p0;
  p0.Fill(0);
  m_ProductWidth = 1;
  m_ProductHeight = 1;
  m_IsInitialize = false;
  m_PointSet->Initialize();
  m_PointSet->SetPoint(0, p0);
  m_PointSet->SetPointData(0, value);
  EvaluateParametricCoefficient();
  this->Modified();
}


template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::SetPolynomalSize(const IndexType polynomalSize)
{
  m_Coeff.SetSize(polynomalSize[1] + 1, polynomalSize[0] + 1);
  m_Coeff.Fill(0);
  this->Modified();
}

template <class TInputImage, class TCoordRep>
double
SarParametricMapFunction<TInputImage, TCoordRep>
::Horner(PointType point) const
{
  // Implementation of a Horner scheme evaluation for bivariate polynomial
  point[0] /= m_ProductWidth;
  point[1] /= m_ProductHeight;

  double result = 0;
  for (unsigned int ycoeff = m_Coeff.Rows(); ycoeff > 0; --ycoeff)
     {
     double intermediate = 0;
     for (unsigned int xcoeff = m_Coeff.Cols(); xcoeff > 0; --xcoeff)
       {
       //std::cout << "m_Coeff(" << ycoeff-1 << "," << xcoeff-1 << ") = " << m_Coeff(ycoeff-1, xcoeff-1) << std::endl;
       intermediate = intermediate * point[0] + m_Coeff(ycoeff-1, xcoeff-1);
       }
     result += vcl_pow( static_cast<double>(point[1]), static_cast<double>(ycoeff-1) ) * intermediate;
     }

  return result;
}

template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::EvaluateParametricCoefficient()
{
  PointSetPointer pointSet = this->GetPointSet();

  PointType coef;
  PointType point;
  coef.Fill(0);
  point.Fill(0);
  typename PointSetType::PixelType pointValue;
  pointValue = itk::NumericTraits<PixelType>::Zero;

  if (pointSet->GetNumberOfPoints() == 0)
    {
    itkExceptionMacro(<< "PointSet must be set before evaluating the parametric coefficient (at least one value)");
    }
  else if (pointSet->GetNumberOfPoints() == 1)
    {
    pointSet->GetPointData(0, &pointValue);
    m_Coeff(0, 0) = pointValue;
    }
  else
    {
    // Get input region for normalization of coordinates
    const itk::MetaDataDictionary& dict = this->GetInputImage()->GetMetaDataDictionary();
    if (dict.HasKey(MetaDataKey::OSSIMKeywordlistKey))
      {
      ImageKeywordlist imageKeywordlist;
      itk::ExposeMetaData<ImageKeywordlist>(dict, MetaDataKey::OSSIMKeywordlistKey, imageKeywordlist);
      std::string nbLinesValue = imageKeywordlist.GetMetadataByKey("number_lines");
      std::string nbSamplesValue = imageKeywordlist.GetMetadataByKey("number_samples");
      // TODO: Don't use atof!
      m_ProductWidth = atof(nbSamplesValue.c_str());
      m_ProductHeight = atof(nbLinesValue.c_str());
      }
    else
      {
      m_ProductHeight = this->GetInputImage()->GetLargestPossibleRegion().GetSize()[0];
      m_ProductWidth  = this->GetInputImage()->GetLargestPossibleRegion().GetSize()[1];
      }

    // Perform the plane least square estimation
    unsigned int nbRecords = pointSet->GetNumberOfPoints();
    unsigned int nbCoef = m_Coeff.Rows() * m_Coeff.Cols();

    vnl_matrix<double> a(nbRecords, nbCoef);
    vnl_vector<double> b(nbRecords), bestParams(nbCoef);
    a.fill(0);
    b.fill(0);
    bestParams.fill(0);

    // Fill the linear system
    for (unsigned int i = 0; i < nbRecords; ++i)
      {
      this->GetPointSet()->GetPoint(i, &point);
      this->GetPointSet()->GetPointData(i, &pointValue);
      b(i) = pointValue;
      //std::cout << "point = " << point << std::endl;
      //std::cout << "b(" << i << ") = " << pointValue << std::endl;

      for (unsigned int xcoeff = 0; xcoeff < m_Coeff.Cols(); ++xcoeff)
        {
        double xpart = vcl_pow( static_cast<double>(point[0]) / m_ProductWidth, static_cast<double>(xcoeff));
        for (unsigned int ycoeff = 0; ycoeff < m_Coeff.Rows(); ++ycoeff)
          {
          double ypart = vcl_pow( static_cast<double>(point[1]) / m_ProductHeight, static_cast<double>(ycoeff));
          a(i, xcoeff * m_Coeff.Rows() + ycoeff) = xpart * ypart;
          //std::cout << "a(" << i << "," << xcoeff * m_Coeff.Rows() + ycoeff << ") = " <<  xpart * ypart << std::endl;
          }
        }
      }

    // Solve linear system with SVD decomposition
    vnl_svd<double> svd(a);
    bestParams = svd.solve(b);


    for (unsigned int xcoeff = 0; xcoeff < m_Coeff.Cols(); ++xcoeff)
      {
      for (unsigned int ycoeff = 0; ycoeff < m_Coeff.Rows(); ++ycoeff)
        {
        m_Coeff(ycoeff, xcoeff) = bestParams(xcoeff * m_Coeff.Rows() + ycoeff);
        //std::cout << "m_Coeff(" << ycoeff << "," << xcoeff << ") = " << m_Coeff(ycoeff, xcoeff) << std::endl;
        }
      }
    }
  m_IsInitialize = true;
}

/**
 *
 */
template <class TInputImage, class TCoordRep>
typename SarParametricMapFunction<TInputImage, TCoordRep>
::RealType
SarParametricMapFunction<TInputImage, TCoordRep>
::Evaluate(const PointType& point) const
{
  RealType result = itk::NumericTraits<RealType>::Zero;

  if (!m_IsInitialize)
    {
    itkExceptionMacro(<< "Must call EvaluateParametricCoefficient before evaluating");
    }
  else if (m_Coeff.Rows() * m_Coeff.Cols() == 1)
    {
    result = m_Coeff(0, 0);
    }
  else
    {
    result = this->Horner(point);
    }
  return result;
}


/**
 *
 */
template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << "Polynom coefficients: "  << m_Coeff << std::endl;
}


} // end namespace otb

#endif