/usr/include/OTB-5.8/otbSarParametricMapFunction.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbSarParametricMapFunction_txx
#define otbSarParametricMapFunction_txx
#include "otbSarParametricMapFunction.h"
#include "itkNumericTraits.h"
#include "itkMetaDataObject.h"
#include "otbMetaDataKey.h"
#include "otbImageKeywordlist.h"
#include <vnl/algo/vnl_svd.h>
namespace otb
{
/**
* Constructor
*/
template <class TInputImage, class TCoordRep>
SarParametricMapFunction<TInputImage, TCoordRep>
::SarParametricMapFunction()
: m_PointSet(PointSetType::New()),
m_IsInitialize(false),
m_ProductWidth(0),
m_ProductHeight(0)
{
m_Coeff.SetSize(1, 1);
m_Coeff.Fill(0);
}
template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::SetConstantValue(const RealType& value)
{
PointType p0;
p0.Fill(0);
m_ProductWidth = 1;
m_ProductHeight = 1;
m_IsInitialize = false;
m_PointSet->Initialize();
m_PointSet->SetPoint(0, p0);
m_PointSet->SetPointData(0, value);
EvaluateParametricCoefficient();
this->Modified();
}
template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::SetPolynomalSize(const IndexType polynomalSize)
{
m_Coeff.SetSize(polynomalSize[1] + 1, polynomalSize[0] + 1);
m_Coeff.Fill(0);
this->Modified();
}
template <class TInputImage, class TCoordRep>
double
SarParametricMapFunction<TInputImage, TCoordRep>
::Horner(PointType point) const
{
// Implementation of a Horner scheme evaluation for bivariate polynomial
point[0] /= m_ProductWidth;
point[1] /= m_ProductHeight;
double result = 0;
for (unsigned int ycoeff = m_Coeff.Rows(); ycoeff > 0; --ycoeff)
{
double intermediate = 0;
for (unsigned int xcoeff = m_Coeff.Cols(); xcoeff > 0; --xcoeff)
{
//std::cout << "m_Coeff(" << ycoeff-1 << "," << xcoeff-1 << ") = " << m_Coeff(ycoeff-1, xcoeff-1) << std::endl;
intermediate = intermediate * point[0] + m_Coeff(ycoeff-1, xcoeff-1);
}
result += vcl_pow( static_cast<double>(point[1]), static_cast<double>(ycoeff-1) ) * intermediate;
}
return result;
}
template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::EvaluateParametricCoefficient()
{
PointSetPointer pointSet = this->GetPointSet();
PointType coef;
PointType point;
coef.Fill(0);
point.Fill(0);
typename PointSetType::PixelType pointValue;
pointValue = itk::NumericTraits<PixelType>::Zero;
if (pointSet->GetNumberOfPoints() == 0)
{
itkExceptionMacro(<< "PointSet must be set before evaluating the parametric coefficient (at least one value)");
}
else if (pointSet->GetNumberOfPoints() == 1)
{
pointSet->GetPointData(0, &pointValue);
m_Coeff(0, 0) = pointValue;
}
else
{
// Get input region for normalization of coordinates
const itk::MetaDataDictionary& dict = this->GetInputImage()->GetMetaDataDictionary();
if (dict.HasKey(MetaDataKey::OSSIMKeywordlistKey))
{
ImageKeywordlist imageKeywordlist;
itk::ExposeMetaData<ImageKeywordlist>(dict, MetaDataKey::OSSIMKeywordlistKey, imageKeywordlist);
std::string nbLinesValue = imageKeywordlist.GetMetadataByKey("number_lines");
std::string nbSamplesValue = imageKeywordlist.GetMetadataByKey("number_samples");
// TODO: Don't use atof!
m_ProductWidth = atof(nbSamplesValue.c_str());
m_ProductHeight = atof(nbLinesValue.c_str());
}
else
{
m_ProductHeight = this->GetInputImage()->GetLargestPossibleRegion().GetSize()[0];
m_ProductWidth = this->GetInputImage()->GetLargestPossibleRegion().GetSize()[1];
}
// Perform the plane least square estimation
unsigned int nbRecords = pointSet->GetNumberOfPoints();
unsigned int nbCoef = m_Coeff.Rows() * m_Coeff.Cols();
vnl_matrix<double> a(nbRecords, nbCoef);
vnl_vector<double> b(nbRecords), bestParams(nbCoef);
a.fill(0);
b.fill(0);
bestParams.fill(0);
// Fill the linear system
for (unsigned int i = 0; i < nbRecords; ++i)
{
this->GetPointSet()->GetPoint(i, &point);
this->GetPointSet()->GetPointData(i, &pointValue);
b(i) = pointValue;
//std::cout << "point = " << point << std::endl;
//std::cout << "b(" << i << ") = " << pointValue << std::endl;
for (unsigned int xcoeff = 0; xcoeff < m_Coeff.Cols(); ++xcoeff)
{
double xpart = vcl_pow( static_cast<double>(point[0]) / m_ProductWidth, static_cast<double>(xcoeff));
for (unsigned int ycoeff = 0; ycoeff < m_Coeff.Rows(); ++ycoeff)
{
double ypart = vcl_pow( static_cast<double>(point[1]) / m_ProductHeight, static_cast<double>(ycoeff));
a(i, xcoeff * m_Coeff.Rows() + ycoeff) = xpart * ypart;
//std::cout << "a(" << i << "," << xcoeff * m_Coeff.Rows() + ycoeff << ") = " << xpart * ypart << std::endl;
}
}
}
// Solve linear system with SVD decomposition
vnl_svd<double> svd(a);
bestParams = svd.solve(b);
for (unsigned int xcoeff = 0; xcoeff < m_Coeff.Cols(); ++xcoeff)
{
for (unsigned int ycoeff = 0; ycoeff < m_Coeff.Rows(); ++ycoeff)
{
m_Coeff(ycoeff, xcoeff) = bestParams(xcoeff * m_Coeff.Rows() + ycoeff);
//std::cout << "m_Coeff(" << ycoeff << "," << xcoeff << ") = " << m_Coeff(ycoeff, xcoeff) << std::endl;
}
}
}
m_IsInitialize = true;
}
/**
*
*/
template <class TInputImage, class TCoordRep>
typename SarParametricMapFunction<TInputImage, TCoordRep>
::RealType
SarParametricMapFunction<TInputImage, TCoordRep>
::Evaluate(const PointType& point) const
{
RealType result = itk::NumericTraits<RealType>::Zero;
if (!m_IsInitialize)
{
itkExceptionMacro(<< "Must call EvaluateParametricCoefficient before evaluating");
}
else if (m_Coeff.Rows() * m_Coeff.Cols() == 1)
{
result = m_Coeff(0, 0);
}
else
{
result = this->Horner(point);
}
return result;
}
/**
*
*/
template <class TInputImage, class TCoordRep>
void
SarParametricMapFunction<TInputImage, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Polynom coefficients: " << m_Coeff << std::endl;
}
} // end namespace otb
#endif
|