This file is indexed.

/usr/include/OTB-5.8/otbSVMMachineLearningModel.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbSVMMachineLearningModel_txx
#define otbSVMMachineLearningModel_txx

#include <fstream>
#include "itkMacro.h"
#include "otbSVMMachineLearningModel.h"
#include "otbOpenCVUtils.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
SVMMachineLearningModel<TInputValue,TOutputValue>
::SVMMachineLearningModel() :
 m_SVMModel (new CvSVM),
 m_SVMType(CvSVM::C_SVC),
 m_KernelType(CvSVM::RBF),
 m_Degree(0),
 m_Gamma(1),
 m_Coef0(0),
 m_C(1),
 m_Nu(0),
 m_P(0),
 m_TermCriteriaType(CV_TERMCRIT_ITER),
 m_MaxIter(1000),
 m_Epsilon(FLT_EPSILON),
 m_ParameterOptimization(false),
 m_OutputDegree(0),
 m_OutputGamma(1),
 m_OutputCoef0(0),
 m_OutputC(1),
 m_OutputNu(0),
 m_OutputP(0)
{
  this->m_ConfidenceIndex = true;
  this->m_IsRegressionSupported = true;
}


template <class TInputValue, class TOutputValue>
SVMMachineLearningModel<TInputValue,TOutputValue>
::~SVMMachineLearningModel()
{
  delete m_SVMModel;
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
SVMMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
  // Check that the SVM type is compatible with the chosen mode (classif/regression)
  if ( bool(m_SVMType == CvSVM::NU_SVR || m_SVMType == CvSVM::EPS_SVR) != this->m_RegressionMode)
    {
    itkGenericExceptionMacro("SVM type incompatible with chosen mode (classification or regression."
                             "SVM types for classification are C_SVC, NU_SVC, ONE_CLASS. "
                             "SVM types for regression are NU_SVR, EPS_SVR");
    }

  //convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);

  // Set up SVM's parameters
  CvTermCriteria term_crit   = cvTermCriteria(m_TermCriteriaType, m_MaxIter, m_Epsilon);
  CvSVMParams params( m_SVMType, m_KernelType, m_Degree, m_Gamma, m_Coef0, m_C, m_Nu, m_P, ITK_NULLPTR , term_crit );

  // Train the SVM
  if (!m_ParameterOptimization)
    {
    m_SVMModel->train(samples, labels, cv::Mat(), cv::Mat(), params);
    }
  else
    {
    //Trains SVM with optimal parameters.
    //train_auto(const Mat& trainData, const Mat& responses, const Mat& varIdx, const Mat& sampleIdx,
    //CvSVMParams params, int k_fold=10, CvParamGrid Cgrid=CvSVM::get_default_grid(CvSVM::C),
    //CvParamGrid gammaGrid=CvSVM::get_default_grid(CvSVM::GAMMA),
    //CvParamGrid pGrid=CvSVM::get_default_grid(CvSVM::P), CvParamGrid nuGrid=CvSVM::get_default_grid(CvSVM::NU),
    //CvParamGrid coeffGrid=CvSVM::get_default_grid(CvSVM::COEF), CvParamGrid degreeGrid=CvSVM::get_default_grid(CvSVM::DEGREE),
    //bool balanced=false)
    //We used default parameters grid. If not enough, those grids should be expose to the user.
    m_SVMModel->train_auto(samples, labels, cv::Mat(), cv::Mat(), params);
    }

  // Export of the SVM parameters into the class SVMMachineLearningModel
  m_OutputDegree = m_SVMModel->get_params().degree;
  m_OutputGamma = m_SVMModel->get_params().gamma;
  m_OutputCoef0 = m_SVMModel->get_params().coef0;
  m_OutputC = m_SVMModel->get_params().C;
  m_OutputNu = m_SVMModel->get_params().nu;
  m_OutputP = m_SVMModel->get_params().p;

}

template <class TInputValue, class TOutputValue>
typename SVMMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
SVMMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  //convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input,sample);

  double result = m_SVMModel->predict(sample,false);

  TargetSampleType target;

  target[0] = static_cast<TOutputValue>(result);

  if (quality != ITK_NULLPTR)
    {
    (*quality) = m_SVMModel->predict(sample,true);
    }

  return target;
}

template <class TInputValue, class TOutputValue>
void
SVMMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_SVMModel->save(filename.c_str(), ITK_NULLPTR);
  else
    m_SVMModel->save(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
void
SVMMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_SVMModel->load(filename.c_str(), ITK_NULLPTR);
  else
    m_SVMModel->load(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
bool
SVMMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
  std::ifstream ifs;
  ifs.open(file.c_str());

  if(!ifs)
    {
    std::cerr<<"Could not read file "<<file<<std::endl;
    return false;
    }

  while (!ifs.eof())
    {
    std::string line;
    std::getline(ifs, line);

    //if (line.find(m_SVMModel->getName()) != std::string::npos)
    if (line.find(CV_TYPE_NAME_ML_SVM) != std::string::npos)
      {
      //std::cout<<"Reading a "<<CV_TYPE_NAME_ML_SVM<<" model"<<std::endl;
      return true;
      }
    }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool
SVMMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void
SVMMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif