This file is indexed.

/usr/include/OTB-5.8/otbSOM.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.

  Copyright (c) Institut Telecom; Telecom bretagne. All rights reserved.
  See IMTCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbSOM_txx
#define otbSOM_txx

#include "otbSOM.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkFixedArray.h"
#include "otbMacro.h"
#include "itkImageRegionIterator.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"

namespace otb
{
/**
 * Constructor
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::SOM()
{
  this->SetNumberOfRequiredInputs(0);
  this->SetNumberOfRequiredOutputs(1);

  m_MapSize.Fill(10);
  m_NumberOfIterations = 10;
  m_BetaInit = 1.0;
  m_BetaEnd = 0.2;
  m_NeighborhoodSizeInit.Fill(3);
  m_MinWeight = static_cast<ValueType>(0.0);
  m_MaxWeight = static_cast<ValueType>(128.0);
  m_RandomInit = false;
  m_Seed = 123574651;
}
/**
 * Destructor
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::~SOM()
{
}
/**
 * Update the output map with a new sample.
 * \param sample The new sample to learn,
 * \param beta The learning coefficient,
 * \param radius The radius of the nieghbourhood.
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
void
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::UpdateMap(const NeuronType& sample, double beta, SizeType& radius)
{
  // output map pointer
  MapPointerType map = this->GetOutput(0);

  // typedefs
  typedef itk::ImageRegionIteratorWithIndex<MapType>              IteratorType;
  typedef itk::FixedArray<double, MapType::ImageDimension>        FixedArrayIndexType;
  typedef itk::Statistics::EuclideanDistanceMetric<FixedArrayIndexType> DistanceType;
  typename DistanceType::Pointer distance = DistanceType::New();

  // winner index in the map
  IndexType  position = map->GetWinner(sample);
  NeuronType winner = map->GetPixel(position);

  // Local neighborhood definition
  RegionType localRegion;
  IndexType  localIndex = position - radius;
  SizeType   localSize;
  for (unsigned int i = 0; i < MapType::ImageDimension; ++i)
    {
    localSize[i] = 2 * radius[i] + 1;
    }
  localRegion.SetIndex(localIndex);
  localRegion.SetSize(localSize);
  localRegion.Crop(map->GetLargestPossibleRegion());
  IteratorType it(map, localRegion);

  // Walk through the map, and evolve each neuron depending on its
  // distance to the winner.
  for (it.GoToBegin(); !it.IsAtEnd(); ++it)
    {
    NeuronType tempNeuron = it.Get();
    NeuronType newNeuron(tempNeuron.Size());

    FixedArrayIndexType positionFA,indexFA;
    positionFA[0] = position[0];
    positionFA[1] = position[1];

    indexFA[0] = it.GetIndex()[0];
    indexFA[1] = it.GetIndex()[1];

    double tempBeta = beta
                      / (1 +
                         distance->Evaluate(positionFA, indexFA));

    for (unsigned int i = 0; i < newNeuron.Size(); ++i)
      {
      newNeuron[i] = tempNeuron[i]
                     + static_cast<typename NeuronType::ValueType>(
        (sample[i] - tempNeuron[i]) * tempBeta);
      }

    it.Set(newNeuron);
    }
}
/**
 * Step one iteration.
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
void
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::Step(unsigned int currentIteration)
{
  // Compute the new learning coefficient
  double newBeta = m_BetaFunctor(
    currentIteration, m_NumberOfIterations, m_BetaInit, m_BetaEnd);

  // Compute the new neighborhood size
  SizeType newSize = m_NeighborhoodSizeFunctor(
    currentIteration, m_NumberOfIterations, m_NeighborhoodSizeInit);

  // update the neurons map with each example of the training set.
  otbMsgDebugMacro(<< "Beta: " << newBeta << ", radius: " << newSize);
  for (typename ListSampleType::Iterator it = m_ListSample->Begin();
       it != m_ListSample->End();
       ++it)
    {
    UpdateMap(it.GetMeasurementVector(), newBeta, newSize);
    }
}
/**
 *  Output information redefinition
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
void
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::GenerateOutputInformation()
{
  Superclass::GenerateOutputInformation();
  this->GetOutput()->SetNumberOfComponentsPerPixel(
    m_ListSample->GetMeasurementVectorSize());

  IndexType index;
  index.Fill(0);

  RegionType region;
  region.SetIndex(index);
  region.SetSize(this->GetMapSize());
  this->GetOutput()->SetRegions(region);

}
/**
 *  Output redefinition
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
void
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::AllocateOutputs()
{
  if (this->GetNumberOfOutputs() != 1) itkExceptionMacro(<< "Number of output image should be 1");

  // output neuron map fill
  MapPointerType map = this->GetOutput(0);
  map->Allocate();
}

/**
 * Main computation method
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
void
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::GenerateData(void)
{
  this->AllocateOutputs();
  this->BeforeThreadedGenerateData();

  MapPointerType map = this->GetOutput(0);

  if (m_RandomInit)
    {
    typedef itk::Statistics::MersenneTwisterRandomVariateGenerator GeneratorType;
    typedef itk::ImageRegionIterator<MapType>                      IteratorType;
    GeneratorType::Pointer generator = GeneratorType::New();
    generator->Initialize(m_Seed);

    NeuronType neuronInit(m_ListSample->GetMeasurementVectorSize());
    IteratorType it(map, map->GetLargestPossibleRegion());

    for (it.GoToBegin(); !it.IsAtEnd(); ++it)
      {
      for (unsigned int i = 0; i < neuronInit.Size(); ++i)
        {
        neuronInit[i] = static_cast<typename NeuronType::ValueType>(
          generator->GetUniformVariate(static_cast<double>(m_MinWeight),
                                       static_cast<double>(m_MaxWeight)));
        }
      it.Set(neuronInit);
      }
    }
  else
    {
    NeuronType neuronInit(m_ListSample->GetMeasurementVectorSize());
    neuronInit.Fill(m_MaxWeight);
    map->FillBuffer(neuronInit);
    }

  // Step through the iterations
  for (unsigned int i = 0; i < m_NumberOfIterations; ++i)
    {
    //otbMsgDebugMacro(<<"Step "<<i+1<<" / "<<m_NumberOfIterations);
    std::cerr << "Step " << i + 1 << " / " << m_NumberOfIterations << "                         \r";
    Step(i);
    }

  this->AfterThreadedGenerateData();
}
/**
 *PrintSelf method
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor>
void
SOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

} // end namespace otb

#endif