/usr/include/OTB-5.8/otbSOM.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
Copyright (c) Institut Telecom; Telecom bretagne. All rights reserved.
See IMTCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbSOM_h
#define otbSOM_h
#include "itkImageToImageFilter.h"
#include "itkEuclideanDistanceMetric.h"
#include "otbCzihoSOMLearningBehaviorFunctor.h"
#include "otbCzihoSOMNeighborhoodBehaviorFunctor.h"
namespace otb
{
/**
* \class SOM
* \brief This class is responsible for the learning of a self organizing map from a
* set of vector represented by the input image (each vector is a pixel of the image).
*
* The learning process iteratively select the best-response neuron for each input vector,
* enhancing its response and the response of its neighbors with respect to a certain radius,
* computed from an initial radius, and to a certain learning factor, decreasing at each iteration.
*
* The behavior of the neighborhood is given by a functor (templated) which parameter is the current
* iteration. It returns a neighborhood of type \code SizeType \endcode.
*
* The behavior of the learning factor (hold by a beta variable) is given by an other functor
* which parameter is the current iteration. It returns a beta value of type double.
*
* The SOMMap produced as output can be either initialized with a constant custom value or randomly
* generated following a normal law. The seed for the random initialization can be modified.
*
* \sa SOMMap
* \sa SOMActivationBuilder
* \sa CzihoSOMLearningBehaviorFunctor
* \sa CzihoSOMNeighborhoodBehaviorFunctor
*
* \ingroup OTBSOM
*/
template <class TListSample, class TMap,
class TSOMLearningBehaviorFunctor = Functor::CzihoSOMLearningBehaviorFunctor,
class TSOMNeighborhoodBehaviorFunctor = Functor::CzihoSOMNeighborhoodBehaviorFunctor>
class ITK_EXPORT SOM
: public itk::ImageSource<TMap>
{
public:
/** Standard typedefs */
typedef SOM Self;
typedef itk::ImageSource<TMap> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Creation through object factory macro */
itkNewMacro(Self);
/** Runtime information macro */
itkTypeMacro(SOM, ImageSource);
typedef TListSample ListSampleType;
typedef typename ListSampleType::Pointer ListSamplePointerType;
typedef TMap MapType;
typedef typename MapType::PixelType NeuronType;
typedef typename NeuronType::ValueType ValueType;
typedef typename MapType::IndexType IndexType;
typedef typename MapType::SizeType SizeType;
typedef typename MapType::RegionType RegionType;
typedef typename MapType::Pointer MapPointerType;
typedef TSOMLearningBehaviorFunctor SOMLearningBehaviorFunctorType;
typedef TSOMNeighborhoodBehaviorFunctor SOMNeighborhoodBehaviorFunctorType;
/** Map dimension */
itkStaticConstMacro(MapDimension, unsigned int, MapType::ImageDimension);
/** Accessors */
itkSetMacro(NumberOfIterations, unsigned int);
itkGetMacro(NumberOfIterations, unsigned int);
itkSetMacro(BetaInit, double);
itkGetMacro(BetaInit, double);
itkSetMacro(BetaEnd, double);
itkGetMacro(BetaEnd, double);
itkSetMacro(MinWeight, ValueType);
itkGetMacro(MinWeight, ValueType);
itkSetMacro(MaxWeight, ValueType);
itkGetMacro(MaxWeight, ValueType);
itkSetMacro(MapSize, SizeType);
itkGetMacro(MapSize, SizeType);
itkSetMacro(NeighborhoodSizeInit, SizeType);
itkGetMacro(NeighborhoodSizeInit, SizeType);
itkSetMacro(RandomInit, bool);
itkGetMacro(RandomInit, bool);
itkSetMacro(Seed, unsigned int);
itkGetMacro(Seed, unsigned int);
itkGetObjectMacro(ListSample, ListSampleType);
itkSetObjectMacro(ListSample, ListSampleType);
void SetBetaFunctor(const SOMLearningBehaviorFunctorType& functor)
{
m_BetaFunctor = functor;
}
void SetNeighborhoodSizeFunctor(const SOMNeighborhoodBehaviorFunctorType& functor)
{
m_NeighborhoodSizeFunctor = functor;
}
protected:
/** Constructor */
SOM();
/** Destructor */
~SOM() ITK_OVERRIDE;
/** Output information redefinition */
void GenerateOutputInformation() ITK_OVERRIDE;
/** Output allocation redefinition */
void AllocateOutputs() ITK_OVERRIDE;
/** Main computation method */
void GenerateData(void) ITK_OVERRIDE;
/**
* Update the output map with a new sample.
* \param sample The new sample to learn,
* \param beta The learning coefficient,
* \param radius The radius of the nieghbourhood.
*/
virtual void UpdateMap(const NeuronType& sample, double beta, SizeType& radius);
/**
* Step one iteration.
*/
virtual void Step(unsigned int currentIteration);
/** PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
private:
SOM(const Self &); // purposely not implemented
void operator =(const Self&); // purposely not implemented
/** Size of the neurons map */
SizeType m_MapSize;
/** Number of iterations */
unsigned int m_NumberOfIterations;
/** Initial learning coefficient */
double m_BetaInit;
/** Final learning coefficient */
double m_BetaEnd;
/** Initial neighborhood size */
SizeType m_NeighborhoodSizeInit;
/** Minimum initial neuron weights */
ValueType m_MinWeight;
/** Maximum initial neuron weights */
ValueType m_MaxWeight;
/** Random initialization bool */
bool m_RandomInit;
/** Seed for random initialization */
unsigned int m_Seed;
/** The input list sample */
ListSamplePointerType m_ListSample;
/** Behavior of the Learning weightening (link to the beta coefficient) */
SOMLearningBehaviorFunctorType m_BetaFunctor;
/** Behavior of the Neighborhood extent */
SOMNeighborhoodBehaviorFunctorType m_NeighborhoodSizeFunctor;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbSOM.txx"
#endif
#endif
|