This file is indexed.

/usr/include/OTB-5.8/otbSOM.h is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.

  Copyright (c) Institut Telecom; Telecom bretagne. All rights reserved.
  See IMTCopyright.txt for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbSOM_h
#define otbSOM_h

#include "itkImageToImageFilter.h"
#include "itkEuclideanDistanceMetric.h"

#include "otbCzihoSOMLearningBehaviorFunctor.h"
#include "otbCzihoSOMNeighborhoodBehaviorFunctor.h"

namespace otb
{
/**
 * \class SOM
 * \brief This class is responsible for the learning of a self organizing map from a
 * set of vector represented by the input image (each vector is a pixel of the image).
 *
 * The learning process iteratively select the best-response neuron for each input vector,
 * enhancing its response and the response of its neighbors with respect to a certain radius,
 * computed from an initial radius, and to a certain learning factor, decreasing at each iteration.
 *
 * The behavior of the neighborhood is given by a functor (templated) which parameter is the current
 * iteration. It returns a neighborhood of type \code SizeType \endcode.
 *
 * The behavior of the learning factor (hold by a beta variable) is given by an other functor
 * which parameter is the current iteration. It returns a beta value of type double.
 *
 * The SOMMap produced as output can be either initialized with a constant custom value or randomly
 * generated following a normal law. The seed for the random initialization can be modified.
 *
 * \sa SOMMap
 * \sa SOMActivationBuilder
 * \sa CzihoSOMLearningBehaviorFunctor
 * \sa CzihoSOMNeighborhoodBehaviorFunctor
 *
 * \ingroup OTBSOM
 */
template <class TListSample, class TMap,
    class TSOMLearningBehaviorFunctor = Functor::CzihoSOMLearningBehaviorFunctor,
    class TSOMNeighborhoodBehaviorFunctor = Functor::CzihoSOMNeighborhoodBehaviorFunctor>
class ITK_EXPORT SOM
  : public itk::ImageSource<TMap>
{
public:
  /** Standard typedefs */
  typedef SOM                           Self;
  typedef itk::ImageSource<TMap>        Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Creation through object factory macro */
  itkNewMacro(Self);
  /** Runtime information macro */
  itkTypeMacro(SOM, ImageSource);

  typedef TListSample                      ListSampleType;
  typedef typename ListSampleType::Pointer ListSamplePointerType;
  typedef TMap                             MapType;
  typedef typename MapType::PixelType      NeuronType;
  typedef typename NeuronType::ValueType   ValueType;
  typedef typename MapType::IndexType      IndexType;
  typedef typename MapType::SizeType       SizeType;
  typedef typename MapType::RegionType     RegionType;
  typedef typename MapType::Pointer        MapPointerType;

  typedef TSOMLearningBehaviorFunctor     SOMLearningBehaviorFunctorType;
  typedef TSOMNeighborhoodBehaviorFunctor SOMNeighborhoodBehaviorFunctorType;

  /** Map dimension */
  itkStaticConstMacro(MapDimension, unsigned int, MapType::ImageDimension);

  /** Accessors */
  itkSetMacro(NumberOfIterations, unsigned int);
  itkGetMacro(NumberOfIterations, unsigned int);
  itkSetMacro(BetaInit, double);
  itkGetMacro(BetaInit, double);
  itkSetMacro(BetaEnd, double);
  itkGetMacro(BetaEnd, double);
  itkSetMacro(MinWeight, ValueType);
  itkGetMacro(MinWeight, ValueType);
  itkSetMacro(MaxWeight, ValueType);
  itkGetMacro(MaxWeight, ValueType);
  itkSetMacro(MapSize, SizeType);
  itkGetMacro(MapSize, SizeType);
  itkSetMacro(NeighborhoodSizeInit, SizeType);
  itkGetMacro(NeighborhoodSizeInit, SizeType);
  itkSetMacro(RandomInit, bool);
  itkGetMacro(RandomInit, bool);
  itkSetMacro(Seed, unsigned int);
  itkGetMacro(Seed, unsigned int);
  itkGetObjectMacro(ListSample, ListSampleType);
  itkSetObjectMacro(ListSample, ListSampleType);

  void SetBetaFunctor(const SOMLearningBehaviorFunctorType& functor)
  {
    m_BetaFunctor = functor;
  }

  void SetNeighborhoodSizeFunctor(const SOMNeighborhoodBehaviorFunctorType& functor)
  {
    m_NeighborhoodSizeFunctor = functor;
  }

protected:
  /** Constructor */
  SOM();
  /** Destructor */
  ~SOM() ITK_OVERRIDE;
  /** Output information redefinition */
  void GenerateOutputInformation() ITK_OVERRIDE;
  /** Output allocation redefinition */
  void AllocateOutputs() ITK_OVERRIDE;
  /** Main computation method */
  void GenerateData(void) ITK_OVERRIDE;
  /**
   * Update the output map with a new sample.
   * \param sample The new sample to learn,
   * \param beta The learning coefficient,
   * \param radius The radius of the nieghbourhood.
   */
  virtual void UpdateMap(const NeuronType& sample, double beta, SizeType& radius);
  /**
   * Step one iteration.
   */
  virtual void Step(unsigned int currentIteration);
  /** PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;

private:
  SOM(const Self &); // purposely not implemented
  void operator =(const Self&); // purposely not implemented
  /** Size of the neurons map */
  SizeType m_MapSize;
  /** Number of iterations */
  unsigned int m_NumberOfIterations;
  /** Initial learning coefficient */
  double m_BetaInit;
  /** Final learning coefficient */
  double m_BetaEnd;
  /** Initial neighborhood size */
  SizeType m_NeighborhoodSizeInit;
  /** Minimum initial neuron weights */
  ValueType m_MinWeight;
  /** Maximum initial neuron weights */
  ValueType m_MaxWeight;
  /** Random initialization bool */
  bool m_RandomInit;
  /** Seed for random initialization */
  unsigned int m_Seed;
  /** The input list sample */
  ListSamplePointerType m_ListSample;
  /** Behavior of the Learning weightening (link to the beta coefficient) */
  SOMLearningBehaviorFunctorType m_BetaFunctor;
  /** Behavior of the Neighborhood extent */
  SOMNeighborhoodBehaviorFunctorType m_NeighborhoodSizeFunctor;

};
} // end namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbSOM.txx"
#endif

#endif