/usr/include/OTB-5.8/otbSFSTexturesFunctor.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbSFSTexturesFunctor_h
#define otbSFSTexturesFunctor_h
#include "otbMath.h"
#include "itkNumericTraits.h"
#include <iostream>
#include <vector>
namespace otb
{
/** \class SFSTexturesFunctor
* \brief This functor computes textures based on line direction analysis through the central pixel.
*
* Directions are computed using NumberOfDirection, used to compute a constant step angle.
* A direction is defined as : \f$ \mathit{d_{i} = \sqrt{(m^{e1}-m{e2})^{2}+(n^{e1}-n{e2})^{2}}} \f$
* From \f$ \mathit{d_{i}} \f$, histograms are defined :
* \f$ \mathit{H(c) : \{c \in I \mid \lbrack d_{1}(c), \ldots , d_{i}(c), \ldots , d_{D}(c)\rbrack \}} \f$
* Thus, 6 textures are defined :
* \f$ \mathit{length = \max_{i \in \lbrack1; D\rbrack}(d_{i}(c)} \f$
* \f$ \mathit{width = \min_{i \in \lbrack1; D\rbrack}(d_{i}(c)} \f$
* \f$ \mathit{PSI = \frac{1}{D}\sum_{1=1}^{D}d_{i}(c)} \f$
* \f$ \mathit{\omega-mean = \frac{1}{D}\sum_{1=1}^{D}\frac{\alpha.(k_{i}-1)}{st_{i}}d_{i}(c)} \f$
* \f$ \mathit{ratio = \arctan{\frac{\sum_{j=1}^{n}{sort_{min}^{j}(H(c))}}{\sum_{j=1}^{n}{sort_{max}^{j}(H(c))}}}} \f$
* \f$ \mathit{SD = \frac{1}{D-1}\sqrt{\sum_{1=1}^{D}(d_{i}(c)-PSI)^{2}}} \f$
*
* For more details, please refer to refer to Xin Huang, Liangpei Zhang and Pingxiang Li publication,
* Classification and Extraction of Spatial Features in Urban Areas
* Using High-Resolution Multispectral Imagery.
* IEEE Geoscience and Remote Sensing Letters,
* vol. 4, n. 2, 2007, pp 260-264
*
* \ingroup Textures
*
* \ingroup OTBTextures
*/
namespace Functor
{
template<class TIter, class TOutputValue>
class SFSTexturesFunctor
{
public:
SFSTexturesFunctor()
{
m_SpatialThreshold = 100;
m_SpectralThreshold = 50;
m_RatioMaxConsiderationNumber = 5;
m_Alpha = 1;
this->SetNumberOfDirections(20); // set the step too
m_SelectedTextures = std::vector<bool>(6, 1);
}
virtual ~SFSTexturesFunctor() {}
typedef typename TIter::InternalPixelType InternalPixelType;
typedef typename TIter::SizeType SizeType;
typedef typename TIter::IndexType IndexType;
typedef typename TIter::OffsetType OffsetType;
typedef TOutputValue OutputValueType;
typedef std::vector<OutputValueType> OutputType;
void SetSpatialThreshold(unsigned int thresh){ m_SpatialThreshold = thresh; }
void SetSpectralThreshold(InternalPixelType thresh){ m_SpectralThreshold = thresh; }
void SetRatioMaxConsiderationNumber(unsigned int value){ m_RatioMaxConsiderationNumber = value; }
void SetAlpha(double alpha){ m_Alpha = alpha; }
void SetNumberOfDirections(unsigned int D)
{
m_NumberOfDirections = D;
m_DirectionStep = CONST_PI / static_cast<double>(D);
}
void SetDirectionStep(double step){ m_DirectionStep = step; }
void SetSelectedTextures(std::vector<bool> vect)
{
m_SelectedTextures.clear();
m_SelectedTextures = vect;
}
void SetTextureStatus(unsigned int id, bool isSelected){ m_SelectedTextures[id] = isSelected; }
unsigned int GetSpatialThreshold(){ return m_SpatialThreshold; }
InternalPixelType GetSpectralThreshold(){ return m_SpectralThreshold; }
unsigned int GetRatioMaxConsiderationNumber(){ return m_RatioMaxConsiderationNumber; }
double GetAlpha(){ return m_Alpha; }
unsigned int GetNumberOfDirections(){ return m_NumberOfDirections(); }
std::vector<bool> GetTexturesStatus(){ return m_SelectedTextures; }
inline OutputType operator ()(const TIter& it)
{
double length = itk::NumericTraits<double>::NonpositiveMin();
double width = itk::NumericTraits<double>::max();
double SpatialThresholdDouble = static_cast<double>(m_SpatialThreshold);
double NumberOfDirectionsDouble = static_cast<double>(m_NumberOfDirections);
double dist = 0.;
double angle = 0.;
double sdiVal = 0.;
double sumWMean = 0.;
double sum = 0.;
std::vector<double> di(m_NumberOfDirections, 0.);
std::vector<double> minSorted(m_RatioMaxConsiderationNumber, width);
std::vector<double> maxSorted(m_RatioMaxConsiderationNumber, length);
std::vector<double> sti(m_NumberOfDirections, 0.);
std::vector<unsigned int> lengthLine(m_NumberOfDirections, 0);
std::vector<double>::iterator itVector;
OutputType out(6, 0);
OffsetType off;
off.Fill(0);
for (unsigned int d = 0; d < m_NumberOfDirections; d++)
{
// Current angle direction
angle = m_DirectionStep * static_cast<double>(d);
// last offset in the direction respecting spatial threshold
off[0] = static_cast<int>(vcl_floor(SpatialThresholdDouble * vcl_cos(angle) + 0.5));
off[1] = static_cast<int>(vcl_floor(SpatialThresholdDouble * vcl_sin(angle) + 0.5));
// last indices in the direction respecting spectral threshold
OffsetType offEnd = this->FindLastOffset(it, off);
// Check the opposite side
off[0] *= -1.0;
off[1] *= -1.0;
OffsetType offStart = this->FindLastOffset(it, off);
// computes distance = dist between the 2 segment point.
dist = vcl_sqrt(vcl_pow(static_cast<double>(offEnd[0]-offStart[0]), 2) + vcl_pow(static_cast<double>(offEnd[1]-offStart[1]), 2));
// for length computation
if (m_SelectedTextures[0] == true) if (dist > length) length = dist;
// for width computation
if (m_SelectedTextures[1] == true) if (dist < width) width = dist;
// for PSI computation
if (m_SelectedTextures[2] == true || m_SelectedTextures[5] == true) sum += dist;
// for w-mean computation
if (m_SelectedTextures[3] == true) sdiVal = this->ComputeSDi(it, offEnd);
// for Ratio computation
if (m_SelectedTextures[4] == true)
{
bool doo = false;
itVector = maxSorted.begin();
while (itVector != maxSorted.end() && doo == false)
{
if (dist > (*itVector))
{
itVector = maxSorted.insert(itVector, dist);
maxSorted.pop_back();
doo = true;
}
++itVector;
}
doo = false;
itVector = minSorted.begin();
while (itVector != minSorted.end() && doo == false)
{
if (dist < (*itVector))
{
itVector = minSorted.insert(itVector, dist);
minSorted.pop_back();
doo = true;
}
++itVector;
}
}
di[d] = dist;
if (m_SelectedTextures[3] == true)
{
lengthLine[d] = static_cast<unsigned int>(dist); //static_cast<unsigned int>( vcl_sqrt(vcl_pow(static_cast<double>(offEnd[0]), 2) + vcl_pow(static_cast<double>(offEnd[1]), 2)) );
sti[d] = sdiVal;
if (sdiVal != 0.) sumWMean += (m_Alpha * (dist - 1) * dist /*lengthLine[n]*di[n]*/) / sdiVal;
}
}
/////// FILL OUTPUT
// length
if (m_SelectedTextures[0] == true) out[0] = static_cast<OutputValueType>(length);
// width
if (m_SelectedTextures[1] == true) out[1] = static_cast<OutputValueType>(width);
// PSI
if (m_SelectedTextures[2] == true) out[2] = static_cast<OutputValueType>(sum / NumberOfDirectionsDouble);
// w-mean
if (m_SelectedTextures[3] == true) out[3] = static_cast<OutputValueType>(sumWMean / NumberOfDirectionsDouble);
// ratio
if (m_SelectedTextures[4] == true)
{
double sumMin = 0;
double sumMax = 0;
for (unsigned int t = 0; t < m_RatioMaxConsiderationNumber; t++)
{
sumMin += minSorted[t];
sumMax += maxSorted[t];
}
if (sumMax != 0.) out[4] = static_cast<OutputValueType>(vcl_atan(sumMin / sumMax));
else if (sumMax == 0. && sumMin == 0.) out[4] = static_cast<OutputValueType>(1.);
}
// SD
if (m_SelectedTextures[5] == true)
{
double sumPSI = 0;
for (unsigned int n = 0; n < di.size(); ++n)
sumPSI += vcl_pow(di[n] - sumWMean / NumberOfDirectionsDouble, 2);
out[5] = static_cast<OutputValueType>(vcl_sqrt(sumPSI) / (NumberOfDirectionsDouble - 1.));
}
return out;
}
/** Checks spectral threshold condition
* the last point in the directiuon is the first that doesn't
* respect the spectral condition.
*/
OffsetType FindLastOffset(const TIter& it, const OffsetType& stopOffset)
{
bool res = true;
int signX = this->ComputeStep(stopOffset[0]);
int signY = this->ComputeStep(stopOffset[1]);
OffsetType currentOff;
currentOff.Fill(0);
currentOff[0] = signX;
double slop = 0.;
if (stopOffset[0] != 0) slop = static_cast<double>(stopOffset[1] / static_cast<double>(stopOffset[0]));
bool isInside = true;
while (isInside == true && res == true)
{
this->ComputePointLine(currentOff, slop, signY, stopOffset[0]);
if (vcl_abs(it.GetPixel(currentOff) - it.GetCenterPixel()) > m_SpectralThreshold)
{
res = false;
}
else currentOff[0] += signX;
isInside = this->CheckIsInside(signX, signY, currentOff, stopOffset);
}
return currentOff;
}
/** Computes SD in the ith direction */
double ComputeSDi(const TIter& it, const OffsetType& stopOffset)
{
bool canGo = true;
unsigned int nbElt = 0;
double SDi = 0.;
double mean = 0.;
double slop = 0.;
if (stopOffset[0] != 0) slop = static_cast<double>(stopOffset[1] / static_cast<double>(stopOffset[0]));
int signX = this->ComputeStep(stopOffset[0]);
int signY = this->ComputeStep(stopOffset[1]);
OffsetType currentOff;
currentOff.Fill(0);
currentOff[0] = signX;
bool isInside = true;
// First compute mean
while (isInside == true && canGo == true)
{
this->ComputePointLine(currentOff, slop, signY, stopOffset[0]);
mean += static_cast<double>(it.GetPixel(currentOff));
nbElt++;
if (vcl_abs(it.GetPixel(currentOff) - it.GetCenterPixel()) >= m_SpectralThreshold) canGo = false;
else currentOff[0] += signX;
isInside = this->CheckIsInside(signX, signY, currentOff, stopOffset);
}
mean /= static_cast<double>(nbElt);
currentOff[0] = signX;
currentOff[1] = 0;
isInside = true;
while (isInside == true && canGo == true)
{
this->ComputePointLine(currentOff, slop, signY, stopOffset[0]);
SDi += vcl_pow((static_cast<double>(it.GetPixel(currentOff)) - mean), 2);
if (vcl_abs(it.GetPixel(currentOff) - it.GetCenterPixel()) >= m_SpectralThreshold) canGo = false;
else currentOff[0] += signX;
isInside = this->CheckIsInside(signX, signY, currentOff, stopOffset);
}
return vcl_sqrt(SDi);
}
/** Check if the current offset is inside the stop one. */
bool CheckIsInside(const int& signX, const int& signY, const OffsetType& currentOff, const OffsetType& stopOffset)
{
bool isInside = true;
if (signX * currentOff[0] >= signX * stopOffset[0] && stopOffset[0] != 0) isInside = false;
else if (signY * currentOff[1] >= signY * stopOffset[1] && stopOffset[1] != 0) isInside = false;
return isInside;
}
/** Compute the y coordinate according to a given x coordinate.
* Use the Bresenham algo if the line is not horizontal (stopOffsetX==0).
* Otherwise, it increments of 1 Y.
*/
void ComputePointLine(OffsetType& currentOff, const double& slop, const int& signY, const int& stopOffsetX)
{
if (stopOffsetX != 0) currentOff[1] = static_cast<int>(vcl_floor(slop * static_cast<double>(currentOff[0]) + 0.5));
else currentOff[1] += signY;
}
/** Compute the to give at x for line computation.
* according to the signof stopOffset.
*/
int ComputeStep(const int& stopOffset)
{
int sign = 1;
if (stopOffset < 0) sign = -1;
return sign;
}
protected:
/** spectral threshold conditon*/
InternalPixelType m_SpectralThreshold;
/** spatial threshold condition */
unsigned int m_SpatialThreshold;
/** Max nulber of min and considered for Ration computation */
unsigned int m_RatioMaxConsiderationNumber;
/** constant to adjust w-mean values */
double m_Alpha;
/** Number of direction considered */
unsigned int m_NumberOfDirections;
/** Angular step between 2 directions (between and 2*pi). */
double m_DirectionStep;
/** List of wanted textures :
* 0: length
* 1: width
* 2: PSI
* 3: w-mean
* 4: ratio
* 5: SD
* Set to 1 means the texture will be computed.
**/
std::vector<bool> m_SelectedTextures;
};
} // end namespace functor
} // end namespace otb
#endif
|