This file is indexed.

/usr/include/OTB-5.8/otbNormalBayesMachineLearningModel.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbNormalBayesMachineLearningModel_txx
#define otbNormalBayesMachineLearningModel_txx

#include <fstream>
#include "itkMacro.h"
#include "otbNormalBayesMachineLearningModel.h"
#include "otbOpenCVUtils.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::NormalBayesMachineLearningModel() :
 m_NormalBayesModel (new CvNormalBayesClassifier)
{
}


template <class TInputValue, class TOutputValue>
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::~NormalBayesMachineLearningModel()
{
  delete m_NormalBayesModel;
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
  //convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);

  m_NormalBayesModel->train(samples,labels,cv::Mat(),cv::Mat(),false);
}

template <class TInputValue, class TOutputValue>
typename NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  //convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input,sample);

  cv::Mat missing  = cv::Mat(1,input.Size(), CV_8U );
  missing.setTo(0);
  double result = m_NormalBayesModel->predict(sample);

  TargetSampleType target;

  target[0] = static_cast<TOutputValue>(result);

  if (quality != ITK_NULLPTR)
    {
    if (!this->HasConfidenceIndex())
      {
      itkExceptionMacro("Confidence index not available for this classifier !");
      }
    }

  return target;
}

template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_NormalBayesModel->save(filename.c_str(), ITK_NULLPTR);
  else
    m_NormalBayesModel->save(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_NormalBayesModel->load(filename.c_str(), ITK_NULLPTR);
  else
    m_NormalBayesModel->load(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
bool
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
  std::ifstream ifs;
  ifs.open(file.c_str());

  if(!ifs)
  {
    std::cerr<<"Could not read file "<<file<<std::endl;
    return false;
  }

  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    if (line.find(CV_TYPE_NAME_ML_NBAYES) != std::string::npos)
    {
       //std::cout<<"Reading a "<<CV_TYPE_NAME_ML_NBAYES<<" model"<<std::endl;
       return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif