/usr/include/OTB-5.8/otbMachineLearningModelFactory.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbMachineLearningModelFactory_txx
#define otbMachineLearningModelFactory_txx
#include "otbMachineLearningModelFactory.h"
#include "otbConfigure.h"
#ifdef OTB_USE_OPENCV
#include "otbKNearestNeighborsMachineLearningModelFactory.h"
#include "otbRandomForestsMachineLearningModelFactory.h"
#include "otbSVMMachineLearningModelFactory.h"
#include "otbBoostMachineLearningModelFactory.h"
#include "otbNeuralNetworkMachineLearningModelFactory.h"
#include "otbNormalBayesMachineLearningModelFactory.h"
#include "otbDecisionTreeMachineLearningModelFactory.h"
#include "otbGradientBoostedTreeMachineLearningModelFactory.h"
#endif
#ifdef OTB_USE_LIBSVM
#include "otbLibSVMMachineLearningModelFactory.h"
#endif
#ifdef OTB_USE_SHARK
#include "otbSharkRandomForestsMachineLearningModelFactory.h"
#endif
#include "itkMutexLockHolder.h"
namespace otb
{
template <class TInputValue, class TOutputValue>
typename MachineLearningModel<TInputValue,TOutputValue>::Pointer
MachineLearningModelFactory<TInputValue,TOutputValue>
::CreateMachineLearningModel(const std::string& path, FileModeType mode)
{
RegisterBuiltInFactories();
std::list<MachineLearningModelTypePointer> possibleMachineLearningModel;
std::list<LightObject::Pointer> allobjects =
itk::ObjectFactoryBase::CreateAllInstance("otbMachineLearningModel");
for(std::list<LightObject::Pointer>::iterator i = allobjects.begin();
i != allobjects.end(); ++i)
{
MachineLearningModel<TInputValue,TOutputValue> * io = dynamic_cast<MachineLearningModel<TInputValue,TOutputValue>*>(i->GetPointer());
if(io)
{
possibleMachineLearningModel.push_back(io);
}
else
{
std::cerr << "Error MachineLearningModel Factory did not return an MachineLearningModel: "
<< (*i)->GetNameOfClass()
<< std::endl;
}
}
for(typename std::list<MachineLearningModelTypePointer>::iterator k = possibleMachineLearningModel.begin();
k != possibleMachineLearningModel.end(); ++k)
{
if( mode == ReadMode )
{
if((*k)->CanReadFile(path))
{
return *k;
}
}
else if( mode == WriteMode )
{
if((*k)->CanWriteFile(path))
{
return *k;
}
}
}
return ITK_NULLPTR;
}
template <class TInputValue, class TOutputValue>
void
MachineLearningModelFactory<TInputValue,TOutputValue>
::RegisterBuiltInFactories()
{
itk::MutexLockHolder<itk::SimpleMutexLock> lockHolder(mutex);
#ifdef OTB_USE_LIBSVM
RegisterFactory(LibSVMMachineLearningModelFactory<TInputValue,TOutputValue>::New());
#endif
#ifdef OTB_USE_SHARK
RegisterFactory(SharkRandomForestsMachineLearningModelFactory<TInputValue,TOutputValue>::New());
#endif
#ifdef OTB_USE_OPENCV
RegisterFactory(RandomForestsMachineLearningModelFactory<TInputValue,TOutputValue>::New());
RegisterFactory(SVMMachineLearningModelFactory<TInputValue,TOutputValue>::New());
RegisterFactory(BoostMachineLearningModelFactory<TInputValue,TOutputValue>::New());
RegisterFactory(NeuralNetworkMachineLearningModelFactory<TInputValue,TOutputValue>::New());
RegisterFactory(NormalBayesMachineLearningModelFactory<TInputValue,TOutputValue>::New());
RegisterFactory(DecisionTreeMachineLearningModelFactory<TInputValue,TOutputValue>::New());
RegisterFactory(GradientBoostedTreeMachineLearningModelFactory<TInputValue,TOutputValue>::New());
RegisterFactory(KNearestNeighborsMachineLearningModelFactory<TInputValue,TOutputValue>::New());
#endif
}
template <class TInputValue, class TOutputValue>
void
MachineLearningModelFactory<TInputValue,TOutputValue>
::RegisterFactory(itk::ObjectFactoryBase * factory)
{
// Unregister any previously registered factory of the same class
// Might be more intensive but static bool is not an option due to
// ld error.
itk::ObjectFactoryBase::UnRegisterFactory(factory);
itk::ObjectFactoryBase::RegisterFactory(factory);
}
template <class TInputValue, class TOutputValue>
void
MachineLearningModelFactory<TInputValue,TOutputValue>
::CleanFactories()
{
itk::MutexLockHolder<itk::SimpleMutexLock> lockHolder(mutex);
std::list<itk::ObjectFactoryBase*> factories = itk::ObjectFactoryBase::GetRegisteredFactories();
std::list<itk::ObjectFactoryBase*>::iterator itFac;
for (itFac = factories.begin(); itFac != factories.end() ; ++itFac)
{
#ifdef OTB_USE_LIBSVM
LibSVMMachineLearningModelFactory<TInputValue,TOutputValue> *libsvmFactory =
dynamic_cast<LibSVMMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (libsvmFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(libsvmFactory);
continue;
}
#endif
#ifdef OTB_USE_SHARK
SharkRandomForestsMachineLearningModelFactory<TInputValue,TOutputValue> *sharkRFFactory =
dynamic_cast<SharkRandomForestsMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (sharkRFFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(sharkRFFactory);
continue;
}
#endif
#ifdef OTB_USE_OPENCV
// RandomForest
RandomForestsMachineLearningModelFactory<TInputValue,TOutputValue> *rfFactory =
dynamic_cast<RandomForestsMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (rfFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(rfFactory);
continue;
}
// SVM
SVMMachineLearningModelFactory<TInputValue,TOutputValue> *svmFactory =
dynamic_cast<SVMMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (svmFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(svmFactory);
continue;
}
// Boost
BoostMachineLearningModelFactory<TInputValue,TOutputValue> *boostFactory =
dynamic_cast<BoostMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (boostFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(boostFactory);
continue;
}
// ANN
NeuralNetworkMachineLearningModelFactory<TInputValue,TOutputValue> *annFactory =
dynamic_cast<NeuralNetworkMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (annFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(annFactory);
continue;
}
// Bayes
NormalBayesMachineLearningModelFactory<TInputValue,TOutputValue> *bayesFactory =
dynamic_cast<NormalBayesMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (bayesFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(bayesFactory);
continue;
}
// Decision Tree
DecisionTreeMachineLearningModelFactory<TInputValue,TOutputValue> *dtFactory =
dynamic_cast<DecisionTreeMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (dtFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(dtFactory);
continue;
}
// Gradient Boosted tree
GradientBoostedTreeMachineLearningModelFactory<TInputValue,TOutputValue> *gbtFactory =
dynamic_cast<GradientBoostedTreeMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (gbtFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(gbtFactory);
continue;
}
// KNN
KNearestNeighborsMachineLearningModelFactory<TInputValue,TOutputValue> *knnFactory =
dynamic_cast<KNearestNeighborsMachineLearningModelFactory<TInputValue,TOutputValue> *>(*itFac);
if (knnFactory)
{
itk::ObjectFactoryBase::UnRegisterFactory(knnFactory);
continue;
}
#endif
}
}
} // end namespace otb
#endif
|