/usr/include/OTB-5.8/otbMachineLearningModel.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbMachineLearningModel_h
#define otbMachineLearningModel_h
#include "itkObject.h"
#include "itkVariableLengthVector.h"
#include "itkListSample.h"
namespace otb
{
/** \class MachineLearningModel
* \brief MachineLearningModel is the base class for all classifier objects (SVM, KNN,
* Random Forests, Artificial Neural Network, ...) implemented in the supervised classification framework of the OTB.
*
* MachineLearningModel is an abstract object that specifies behavior and
* interface of supervised classifiers (SVM, KNN, Random Forests, Artificial
* Neural Network, ...) in the generic supervised classification framework of the OTB.
* The main generic virtual methods specifically implemented in each classifier
* derived from the MachineLearningModel class are two learning-related methods:
* Train() and Save(), and three classification-related methods: Load(),
* DoPredict() and optionnaly DoPredictBatch().
*
* Thus, each classifier derived from the MachineLearningModel class
* computes its corresponding model with Train() and exports it with
* the help of the Save() method.
*
* It is also possible to classify any input sample composed of several
* features (or any number of bands in the case of a pixel extracted
* from a multi-band image) with the help of the Predict() method which
* needs a previous loading of the classification model with the Load() method.
*
* \sa MachineLearningModelFactory
* \sa LibSVMMachineLearningModel
* \sa SVMMachineLearningModel
* \sa BoostMachineLearningModel
* \sa KNearestNeighborsMachineLearningModel
* \sa DecisionTreeMachineLearningModel
* \sa RandomForestsMachineLearningModel
* \sa GradientBoostedTreeMachineLearningModel
* \sa NormalBayesMachineLearningModel
* \sa NeuralNetworkMachineLearningModel
* \sa SharkRandomForestsMachineLearningModel
* \sa ImageClassificationFilter
*
*
* \ingroup OTBSupervised
*/
template <class TInputValue, class TTargetValue, class TConfidenceValue = double >
class ITK_EXPORT MachineLearningModel
: public itk::Object
{
public:
/**\name Standard ITK typedefs */
//@{
typedef MachineLearningModel Self;
typedef itk::Object Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
//@}
/**\name Input related typedefs */
//@{
typedef TInputValue InputValueType;
typedef itk::VariableLengthVector<InputValueType> InputSampleType;
typedef itk::Statistics::ListSample<InputSampleType> InputListSampleType;
//@}
/**\name Target related typedefs */
//@{
typedef TTargetValue TargetValueType;
typedef itk::FixedArray<TargetValueType,1> TargetSampleType;
typedef itk::Statistics::ListSample<TargetSampleType> TargetListSampleType;
//@}
/**\name Confidence value typedef */
typedef TConfidenceValue ConfidenceValueType;
typedef itk::FixedArray<ConfidenceValueType,1> ConfidenceSampleType;
typedef itk::Statistics::ListSample<ConfidenceSampleType> ConfidenceListSampleType;
/**\name Standard macros */
//@{
/** Run-time type information (and related methods). */
itkTypeMacro(MachineLearningModel, itk::Object);
//@}
/** Train the machine learning model */
virtual void Train() =0;
/** Predict a single sample
* \param input The sample
* \param quality A pointer to the quality variable were to store
* quality value, or NULL
* \return The predicted label
*/
TargetSampleType Predict(const InputSampleType& input, ConfidenceValueType *quality = ITK_NULLPTR) const;
/** Predict a batch of samples (InputListSampleType)
* \param input The batch of sample to predict
* \param quality A pointer to the list were to store
* quality value, or NULL
* \return The predicted labels
* Note that this method will be multi-threaded if OTB is built
* with OpenMP.
*/
typename TargetListSampleType::Pointer PredictBatch(const InputListSampleType * input, ConfidenceListSampleType * quality = ITK_NULLPTR) const;
/** THIS METHOD IS DEPRECATED AND SHOULD NOT BE USED. */
void PredictAll();
/**\name Classification model file manipulation */
//@{
/** Save the model to file */
virtual void Save(const std::string & filename, const std::string & name="") = 0;
/** Load the model from file */
virtual void Load(const std::string & filename, const std::string & name="") = 0;
//@}
/**\name Classification model file compatibility tests */
//@{
/** Is the input model file readable and compatible with the corresponding classifier ? */
virtual bool CanReadFile(const std::string &) = 0;
/** Is the input model file writable and compatible with the corresponding classifier ? */
virtual bool CanWriteFile(const std::string &) = 0;
//@}
/** Query capacity to produce a confidence index */
bool HasConfidenceIndex() const {return m_ConfidenceIndex;}
/**\name Input list of samples accessors */
//@{
itkSetObjectMacro(InputListSample,InputListSampleType);
itkGetObjectMacro(InputListSample,InputListSampleType);
itkGetConstObjectMacro(InputListSample,InputListSampleType);
//@}
/**\name Classification output accessors */
//@{
/** Set the target labels (to be used before training) */
itkSetObjectMacro(TargetListSample,TargetListSampleType);
/** Get the target labels (to be used after PredictAll) */
itkGetObjectMacro(TargetListSample,TargetListSampleType);
//@}
itkGetObjectMacro(ConfidenceListSample,ConfidenceListSampleType);
/**\name Use model in regression mode */
//@{
itkGetMacro(RegressionMode,bool);
void SetRegressionMode(bool flag);
//@}
protected:
/** Constructor */
MachineLearningModel();
/** Destructor */
~MachineLearningModel() ITK_OVERRIDE;
/** PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
/** Input list sample */
typename InputListSampleType::Pointer m_InputListSample;
/** Target list sample */
typename TargetListSampleType::Pointer m_TargetListSample;
typename ConfidenceListSampleType::Pointer m_ConfidenceListSample;
/** flag to choose between classification and regression modes */
bool m_RegressionMode;
/** flag that indicates if the model supports regression, child
* classes should modify it in their constructor if they support
* regression mode */
bool m_IsRegressionSupported;
/** flag that tells if the model support confidence index output */
bool m_ConfidenceIndex;
/** Is DoPredictBatch multi-threaded ? */
bool m_IsDoPredictBatchMultiThreaded;
private:
/** Actual implementation of BatchPredicition
* Default implementation will call DoPredict iteratively
* \param input The input batch
* \param startIndex Index of the first sample to predict
* \param size Number of samples to predict
* \param target Pointer to the list of produced labels
* \param quality Pointer to the list of produced confidence
* values, or NULL
*
* Override me if internal implementation allows for batch
* prediction.
*
* Also set m_IsDoPredictBatchMultiThreaded to true if internal
* implementation allows for parallel batch prediction.
*/
virtual void DoPredictBatch(const InputListSampleType * input, const unsigned int & startIndex, const unsigned int & size, TargetListSampleType * target, ConfidenceListSampleType * quality = ITK_NULLPTR) const;
/** Actual implementation of single sample prediction
* \param input sample to predict
* \param quality Pointer to a variable to store confidence value,
* or NULL
* \return The predicted label
*/
virtual TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType * quality= ITK_NULLPTR) const = 0;
MachineLearningModel(const Self &); //purposely not implemented
void operator =(const Self&); //purposely not implemented
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbMachineLearningModel.txx"
#endif
#endif
|