This file is indexed.

/usr/include/OTB-5.8/otbLocalHistogramImageFunction.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbLocalHistogramImageFunction_txx
#define otbLocalHistogramImageFunction_txx

#include "otbLocalHistogramImageFunction.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkExtractImageFilter.h"
#include "otbMath.h"

namespace otb
{

/**
 * Constructor
 */
template <class TInputImage, class TCoordRep>
LocalHistogramImageFunction<TInputImage, TCoordRep>
::LocalHistogramImageFunction() :
  m_NeighborhoodRadius(1), m_NumberOfHistogramBins(128), m_HistogramMin(0), m_HistogramMax(1), m_GaussianSmoothing(true)
{
}

template <class TInputImage, class TCoordRep>
void
LocalHistogramImageFunction<TInputImage, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << " Neighborhood radius value   : "  << this->GetNeighborhoodRadius() << std::endl;
  os << indent << " Number Of Histogram Bins    : "  << this->GetNumberOfHistogramBins() << std::endl;
  os << indent << " Histogram Minimum           : "  << this->GetHistogramMin() << std::endl;
  os << indent << " Histogram Maximum           : "  << this->GetHistogramMax() << std::endl;
}

template <class TInputImage, class TCoordRep>
typename LocalHistogramImageFunction<TInputImage, TCoordRep>::OutputType
LocalHistogramImageFunction<TInputImage, TCoordRep>
::EvaluateAtIndex(const IndexType& index) const
{
  typename HistogramType::Pointer histogram = HistogramType::New();

  typename HistogramType::SizeType size(this->GetInputImage()->GetNumberOfComponentsPerPixel());
  size.Fill(this->GetNumberOfHistogramBins());

  typename HistogramType::MeasurementVectorType lowerBound(this->GetInputImage()->GetNumberOfComponentsPerPixel());
  typename HistogramType::MeasurementVectorType upperBound(this->GetInputImage()->GetNumberOfComponentsPerPixel());

  lowerBound.Fill( static_cast<typename HistogramType::MeasurementType>(this->GetHistogramMin()) );
  upperBound.Fill( static_cast<typename HistogramType::MeasurementType>(this->GetHistogramMax()) );

  histogram->SetMeasurementVectorSize(this->GetInputImage()->GetNumberOfComponentsPerPixel());
  histogram->Initialize(size, lowerBound, upperBound );
  histogram->SetToZero();

  // Check for input image
  if( !this->GetInputImage() )
    {
    return histogram;
    }

  // Check for out of buffer
  if ( !this->IsInsideBuffer( index ) )
    {
    return histogram;
    }

  // Create an N-d neighborhood kernel, using a zeroflux boundary condition
  typename InputImageType::SizeType kernelSize;
  kernelSize.Fill( m_NeighborhoodRadius );

  itk::ConstNeighborhoodIterator<InputImageType>
    it(kernelSize, this->GetInputImage(), this->GetInputImage()->GetBufferedRegion());

  // Set the iterator at the desired location
  it.SetLocation(index);

  // Define a gaussian kernel around the center location
  double squaredRadius = m_NeighborhoodRadius * m_NeighborhoodRadius;
  double squaredSigma = 0.25 * squaredRadius;

  // Offset to be used in the loops
  typename InputImageType::OffsetType offset;

  // Fill the histogram
  for(int i = -(int)m_NeighborhoodRadius; i< (int)m_NeighborhoodRadius; ++i)
    {
    for(int j = -(int)m_NeighborhoodRadius; j< (int)m_NeighborhoodRadius; ++j)
      {
      // Check if the current pixel lies within a disc of radius m_NeighborhoodRadius
      double currentSquaredRadius = i*i+j*j;
      if(currentSquaredRadius < squaredRadius)
        {
        // If so, compute the gaussian weighting (this could be
        // computed once for all for the sake of optimisation) if necessary
        double gWeight = 1.;
        if(m_GaussianSmoothing)
          {
          gWeight = (1/vcl_sqrt(otb::CONST_2PI*squaredSigma)) * vcl_exp(- currentSquaredRadius/(2*squaredSigma));
          }

        // Compute pixel location
        offset[0]=i;
        offset[1]=j;

        // Get the current value
        typename HistogramType::MeasurementVectorType sample(this->GetInputImage()->GetNumberOfComponentsPerPixel());
        sample[0] = it.GetPixel(offset);

        // Populate histogram
        histogram->IncreaseFrequencyOfMeasurement(sample, gWeight);
        }
      }
    }
  return histogram;
}

} // namespace otb

#endif