/usr/include/OTB-5.8/otbLineSegmentDetector.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbLineSegmentDetector_txx
#define otbLineSegmentDetector_txx
#include "otbLineSegmentDetector.h"
#include "itkImageRegionIterator.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkImageConstIterator.h"
#include "itkNeighborhoodIterator.h"
#include "otbPolygon.h"
#include "itkCastImageFilter.h"
#include "otbRectangle.h"
#include "otbRemoteSensingRegion.h"
#include "otbMath.h"
#include "itkMatrix.h"
#include "itkSymmetricEigenAnalysis.h"
extern "C" double dlngam_(double *x);
extern "C" double dbetai_(double *x, double *a, double *b);
namespace otb
{
template <class TInputImage, class TPrecision>
LineSegmentDetector<TInputImage, TPrecision>
::LineSegmentDetector()
{
this->SetNumberOfRequiredInputs(1);
this->SetNumberOfRequiredOutputs(1);
m_DirectionsAllowed = 1. / 8.;
m_Prec = CONST_PI * m_DirectionsAllowed;
m_Threshold = 5.2;
/** Compute the modulus and the orientation gradient images */
m_GradientFilter = GradientFilterType::New();
m_MagnitudeFilter = MagnitudeFilterType::New();
m_OrientationFilter = OrientationFilterType::New();
/** Image to store the pixels used 0:NOTUSED 127:NOTINIT 255:USED*/
m_UsedPointImage = LabelImageType::New();
}
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::SetInput(const InputImageType *input)
{
this->Superclass::SetNthInput(0, const_cast<InputImageType *>(input));
}
template <class TInputImage, class TPrecision>
const typename LineSegmentDetector<TInputImage, TPrecision>
::InputImageType *
LineSegmentDetector<TInputImage, TPrecision>
::GetInput(void)
{
if (this->GetNumberOfInputs() < 1)
{
return ITK_NULLPTR;
}
return static_cast<const InputImageType *>(this->Superclass::GetInput(0));
}
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::GenerateInputRequestedRegion(void)
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the inputs
typename InputImageType::Pointer input =
const_cast<InputImageType *> (this->GetInput());
if ( !input )
{
return;
}
// The input is necessarily the largest possible region.
// For a streamed implementation, use the StreamingLineSegmentDetector filter
input->SetRequestedRegionToLargestPossibleRegion();
}
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::GenerateData()
{
if (this->GetInput()->GetRequestedRegion() != this->GetInput()->GetLargestPossibleRegion())
{
itkExceptionMacro(<< "Not streamed filter. ERROR : requested region is not the largest possible region.");
}
/** Allocate memory for the temporary label Image*/
m_UsedPointImage->SetRegions(this->GetInput()->GetLargestPossibleRegion());
m_UsedPointImage->Allocate();
m_UsedPointImage->FillBuffer(0);
/** Cast the MagnitudeOutput Image in */
typedef itk::CastImageFilter<InputImageType, OutputImageType> castFilerType;
typename castFilerType::Pointer castFilter = castFilerType::New();
castFilter->SetInput(this->GetInput());
/** Compute the modulus and the orientation gradient image */
m_GradientFilter->SetInput(castFilter->GetOutput());
m_GradientFilter->SetSigma(0.6);
m_MagnitudeFilter->SetInput(m_GradientFilter->GetOutput());
m_OrientationFilter->SetInput(m_GradientFilter->GetOutput());
m_MagnitudeFilter->Update();
m_OrientationFilter->Update();
/** Compute the seed histogram to begin the search*/
CoordinateHistogramType CoordinateHistogram;
CoordinateHistogram = this->SortImageByModulusValue(m_MagnitudeFilter->GetOutput());
/** Search the segments on the image by growing a region from a seed */
this->LineSegmentDetection(CoordinateHistogram);
/** Transfert the detected segment to the output vector data */
this->ComputeRectangles();
}
template <class TInputImage, class TPrecision>
typename LineSegmentDetector<TInputImage, TPrecision>
::CoordinateHistogramType
LineSegmentDetector<TInputImage, TPrecision>
::SortImageByModulusValue(MagnitudeImagePointerType modulusImage)
{
RegionType largestRegion = this->GetInput()->GetLargestPossibleRegion();
// Compute the minimum region size
double logNT = 5. * vcl_log10( static_cast<double>(largestRegion.GetNumberOfPixels()) ) / 2.;
double log1_p = vcl_log10(m_DirectionsAllowed);
double rapport = logNT / log1_p;
m_MinimumRegionSize = static_cast<unsigned int>(-rapport);
// Computing the min & max of the image
typedef itk::MinimumMaximumImageCalculator<OutputImageType> MinMaxCalculatorFilter;
typename MinMaxCalculatorFilter::Pointer minmaxCalculator = MinMaxCalculatorFilter::New();
minmaxCalculator->SetImage(modulusImage);
minmaxCalculator->ComputeMinimum();
OutputPixelType min = minmaxCalculator->GetMinimum();
minmaxCalculator->ComputeMaximum();
OutputPixelType max = minmaxCalculator->GetMaximum();
/** Compute the threshold on the gradient*/
m_Threshold = m_Threshold * ((max - min) / 255.); // threshold normalized with min & max of the values
/** Computing the length of the bins*/
unsigned int NbBin = 1024;
double lengthBin = static_cast<double>((max - min)) / static_cast<double>(NbBin-1);
CoordinateHistogramType tempHisto(NbBin); /** Initializing the histogram */
// New region : without boundaries
RegionType region;
SizeType size = modulusImage->GetRequestedRegion().GetSize();
InputIndexType id = modulusImage->GetRequestedRegion().GetIndex();
// Don't take in carre the boundary of the image.
// Special cases for streamed call
if (modulusImage->GetRequestedRegion().GetIndex()[0] == 0)
{
id[0]++;
size[0]--;
if (modulusImage->GetRequestedRegion().GetSize()[0] + modulusImage->GetRequestedRegion().GetIndex()[0] ==
largestRegion.GetSize(0))
size[0]--;
}
else if (modulusImage->GetRequestedRegion().GetSize()[0] + modulusImage->GetRequestedRegion().GetIndex()[0] ==
largestRegion.GetSize(0))
{
size[0]--;
}
if (modulusImage->GetRequestedRegion().GetIndex()[1] == 0)
{
id[1]++;
size[1]--;
if (modulusImage->GetRequestedRegion().GetSize()[1] + modulusImage->GetRequestedRegion().GetIndex()[1] ==
largestRegion.GetSize(1)) size[1]--;
}
else if (modulusImage->GetRequestedRegion().GetSize()[1] + modulusImage->GetRequestedRegion().GetIndex()[1] ==
largestRegion.GetSize(1))
{
size[1]--;
}
region.SetIndex(id);
region.SetSize(size);
itk::ImageRegionIterator<OutputImageType> it(modulusImage, region);
it.GoToBegin();
while (!it.IsAtEnd())
{
unsigned int bin = static_cast<unsigned int> (static_cast<double>(it.Value()-min) / lengthBin);
// Highlights bug 498
assert(bin<NbBin);
if (it.Value() - m_Threshold > 1e-10) tempHisto[NbBin - bin - 1].push_back(it.GetIndex());
else SetPixelToUsed(it.GetIndex());
++it;
}
return tempHisto;
}
/**************************************************************************************************************/
/**
* Method used to search the segments
*/
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::LineSegmentDetection(CoordinateHistogramType& CoordinateHistogram)
{
/** Begin the search of the segments*/
CoordinateHistogramIteratorType ItCoordinateList = CoordinateHistogram.begin();
while (ItCoordinateList != CoordinateHistogram.end())
{
typename IndexVectorType::iterator ItIndexVector = (*ItCoordinateList).begin();
while (ItIndexVector != (*ItCoordinateList).end())
{
InputIndexType index = *(ItIndexVector);
/** If the point is not yet computed */
if (this->IsNotUsed(index))
{
IndexVectorType region;
double regionAngle = 0.;
bool fail = GrowRegion(index, region, regionAngle);
if (!fail)
{
//region -> rectangle
RectangleType rectangle = Region2Rectangle(region, regionAngle);
//ImprovRectangle(&rectangle)
double nfa = ImproveRectangle(rectangle);
double density = (double)region.size() /
( vcl_sqrt((rectangle[2]-rectangle[0])*(rectangle[2]-rectangle[0])
+(rectangle[3]-rectangle[1])*(rectangle[3]-rectangle[1])) * rectangle[4] );
if (density < 0.7)
{
nfa = -1;
//std::cout << "Density = " << density << std::endl;
}
//if NFA(ImprovRect(rec)) > 0.
if (nfa > 0.)
{
m_RectangleList.push_back(rectangle);
}
else
{
SetRegionToNotIni(region);
}
}
}
++ItIndexVector;
}
++ItCoordinateList;
}
}
/**************************************************************************************************************/
/**
* Method used to compute rectangles from region
* Here you can access the NFA for each region
*/
template <class TInputImage, class TPrecision>
int
LineSegmentDetector<TInputImage, TPrecision>
::ComputeRectangles()
{
// Output
this->GetOutput(0)->SetMetaDataDictionary(this->GetInput()->GetMetaDataDictionary());
// Retrieving root node
typename DataNodeType::Pointer root = this->GetOutput(0)->GetDataTree()->GetRoot()->Get();
// Create the document node
typename DataNodeType::Pointer document = DataNodeType::New();
document->SetNodeType(otb::DOCUMENT);
// Adding the layer to the data tree
this->GetOutput(0)->GetDataTree()->Add(document, root);
// Create the folder node
typename DataNodeType::Pointer folder = DataNodeType::New();
folder->SetNodeType(otb::FOLDER);
// Adding the layer to the data tree
this->GetOutput(0)->GetDataTree()->Add(folder, document);
this->GetOutput(0)->SetProjectionRef(this->GetInput()->GetProjectionRef());
SpacingType spacing = this->GetInput()->GetSpacing();
OriginType origin = this->GetInput()->GetOrigin();
/** store the lines*/
RectangleListTypeIterator itRec = m_RectangleList.begin();
while (itRec != m_RectangleList.end())
{
VertexType start, end;
start[0] = origin[0]
+ static_cast<TPrecision>((*itRec)[0]) * spacing[0];
start[1] = origin[1]
+ static_cast<TPrecision>((*itRec)[1]) * spacing[1];
end[0] = origin[0]
+ static_cast<TPrecision>((*itRec)[2]) * spacing[0];
end[1] = origin[1]
+ static_cast<TPrecision>((*itRec)[3]) * spacing[1];
typename DataNodeType::Pointer CurrentGeometry = DataNodeType::New();
CurrentGeometry->SetNodeId("FEATURE_LINE");
CurrentGeometry->SetNodeType(otb::FEATURE_LINE);
typename LineType::Pointer line = LineType::New();
CurrentGeometry->SetLine(line);
this->GetOutput(0)->GetDataTree()->Add(CurrentGeometry, folder);
CurrentGeometry->GetLine()->AddVertex(start);
CurrentGeometry->GetLine()->AddVertex(end);
++itRec;
}
return EXIT_SUCCESS;
}
/**************************************************************************************************************/
/**
* Copy a rectangle rSrc in a rectangle rDst
*/
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::CopyRectangle(RectangleType& rDst, RectangleType& rSrc) const
{
RectangleIteratorType itSrc = rSrc.begin();
while (itSrc != rSrc.end())
{
rDst.push_back(*(itSrc));
++itSrc;
}
}
/**************************************************************************************************************/
/**
* Method used to compute improve the NFA of The rectangle by changing
* the components of the rectangle
*/
template <class TInputImage, class TPrecision>
double
LineSegmentDetector<TInputImage, TPrecision>
::ImproveRectangle(RectangleType &rec) const
{
int n = 0;
double nfa_new;
double delta = 0.5;
double delta_2 = delta / 2.0;
RectangleType r;
double nfa_rect = this->ComputeRectNFA(rec);
if (nfa_rect > 0.) return nfa_rect;
/*Try to improve the precision of the oriented */
CopyRectangle(r, rec);
for (n = 0; n < 5; ++n)
{
r[7] /= 2.0;
r[6] = CONST_PI * r[7]; // prec = rec[6]
nfa_new = this->ComputeRectNFA(r);
if (nfa_new > nfa_rect)
{
nfa_rect = nfa_new;
CopyRectangle(rec, r);
}
}
if (nfa_rect > 0.) return nfa_rect;
/*Try to improve the width of the rectangle*/
CopyRectangle(r, rec);
for (n = 0; n < 5; ++n)
{
r[4] -= delta; //r[4] is stored as the width
nfa_new = this->ComputeRectNFA(r);
if (nfa_new > nfa_rect)
{
nfa_rect = nfa_new;
CopyRectangle(rec, r);
}
}
if (nfa_rect > 0.) return nfa_rect;
/*Try to improve the extremity of the segments*/
CopyRectangle(r, rec);
for (n = 0; n < 5; ++n)
{
if ((r[4] - delta) >= 0.5)
{
r[0] += -vcl_sin(r[5]) * delta_2;
r[1] += vcl_cos(r[5]) * delta_2;
r[2] += -vcl_sin(r[5]) * delta_2;
r[3] += vcl_cos(r[5]) * delta_2;
r[4] -= delta;
nfa_new = this->ComputeRectNFA(r);
if (nfa_new > nfa_rect)
{
nfa_rect = nfa_new;
CopyRectangle(rec, r);
}
}
}
if (nfa_rect > 0.) return nfa_rect;
CopyRectangle(r, rec);
for (n = 0; n < 5; ++n)
{
if ((r[4] - delta) >= 0.5)
{
r[0] -= -vcl_sin(r[5]) * delta_2;
r[1] -= vcl_cos(r[5]) * delta_2;
r[2] -= -vcl_sin(r[5]) * delta_2;
r[3] -= vcl_cos(r[5]) * delta_2;
r[4] -= delta;
nfa_new = this->ComputeRectNFA(r);
if (nfa_new > nfa_rect)
{
nfa_rect = nfa_new;
CopyRectangle(rec, r);
}
}
}
if (nfa_rect > 0.) return nfa_rect;
/*Try to improve the precision again */
CopyRectangle(r, rec);
for (n = 0; n < 5; ++n)
{
r[7] /= 2.0;
r[6] = CONST_PI * r[7]; // prec = rec[]
nfa_new = this->ComputeRectNFA(r);
if (nfa_new > nfa_rect)
{
nfa_rect = nfa_new;
CopyRectangle(rec, r);
}
}
return nfa_rect;
}
/**************************************************************************************************************/
/**
* Method IsNotUsed : Determine if a point was NOTUSED or not. search in the m_LabelImage
*/
template <class TInputImage, class TPrecision>
bool
LineSegmentDetector<TInputImage, TPrecision>
::IsNotUsed(InputIndexType& index) const
{
bool isNotUsed = false;
typedef itk::ImageConstIterator<LabelImageType> ImageIteratorType;
RegionType region = m_UsedPointImage->GetLargestPossibleRegion();
InputIndexType indexRef = region.GetIndex();
ImageIteratorType itLabel(m_UsedPointImage, region);
itLabel.GoToBegin();
if (m_UsedPointImage->GetLargestPossibleRegion().IsInside(index))
{
itLabel.SetIndex(index);
if (itLabel.Get() == 0) isNotUsed = true;
}
else
{
itkExceptionMacro(<< "Can't access to index " << index << ", outside the image largest region (" << indexRef
<< ", " << region.GetSize() << ")");
}
return isNotUsed;
}
/**************************************************************************************************************/
/**
* Method IsUsed : Determine if a point was USED or not. search in the m_LabelImage
*/
template <class TInputImage, class TPrecision>
bool
LineSegmentDetector<TInputImage, TPrecision>
::IsUsed(InputIndexType& index) const
{
bool isUsed = false;
typedef itk::ImageConstIterator<LabelImageType> ImageIteratorType;
RegionType region = m_UsedPointImage->GetLargestPossibleRegion();
InputIndexType indexRef = region.GetIndex();
ImageIteratorType itLabel(m_UsedPointImage, region);
itLabel.GoToBegin();
if (m_UsedPointImage->GetLargestPossibleRegion().IsInside(index))
{
itLabel.SetIndex(index);
if (itLabel.Get() == 255) isUsed = true;
}
else
{
itkExceptionMacro(<< "Can't access to index " << index << ", outside the image largest region (" <<indexRef
<< ", " << region.GetSize() << ")");
}
return isUsed;
}
/**************************************************************************************************************/
/**
* Method IsNotIni : Determine if a point was NOTINI or not. search in the m_LabelImage
*/
template <class TInputImage, class TPrecision>
bool
LineSegmentDetector<TInputImage, TPrecision>
::IsNotIni(InputIndexType& index) const
{
bool isNotIni = false;
typedef itk::ImageConstIterator<LabelImageType> ImageIteratorType;
RegionType region = m_UsedPointImage->GetLargestPossibleRegion();
InputIndexType indexRef = region.GetIndex();
ImageIteratorType itLabel(m_UsedPointImage, region);
itLabel.GoToBegin();
if (m_UsedPointImage->GetLargestPossibleRegion().IsInside(index))
{
itLabel.SetIndex(index);
if (itLabel.Get() == 127) isNotIni = true;
}
else
{
itkExceptionMacro(<< "Can't access to index " << index << ", outside the image largest region (" << indexRef
<< ", " << region.GetSize() << ")");
}
return isNotIni;
}
/**************************************************************************************************************/
/**
* Method SetPixelToUsed : Set a pixel to USED
*/
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::SetPixelToUsed(InputIndexType index)
{
typedef itk::NeighborhoodIterator<LabelImageType> NeighborhoodLabelIteratorType;
typename NeighborhoodLabelIteratorType::SizeType radiusLabel;
radiusLabel.Fill(0);
NeighborhoodLabelIteratorType itLabel(radiusLabel, m_UsedPointImage,
m_UsedPointImage->GetRequestedRegion());
itLabel.SetLocation(index);
itLabel.SetCenterPixel(255); // 255 : Set the point status to : Used Point
}
/**************************************************************************************************************/
/**
* Method SetPixelToNotIni : Set a pixel to NOTINI
*/
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::SetPixelToNotIni(InputIndexType index)
{
typedef itk::NeighborhoodIterator<LabelImageType> NeighborhoodLabelIteratorType;
typename NeighborhoodLabelIteratorType::SizeType radiusLabel;
radiusLabel.Fill(0);
NeighborhoodLabelIteratorType itLabel(radiusLabel, m_UsedPointImage,
m_UsedPointImage->GetRequestedRegion());
itLabel.SetLocation(index);
itLabel.SetCenterPixel(127); // 127 : Set the point status to : Not Ini Point
}
/**************************************************************************************************************/
/**
* Method SetRegionToNotIni : Set a region pixels to NOTINI
*/
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::SetRegionToNotIni(IndexVectorType region)
{
IndexVectorIteratorType it = region.begin();
while (it != region.end())
{
this->SetPixelToNotIni(*it);
it ++;
}
}
/**************************************************************************************************************/
/**
* Method GrowRegion : From a seed grow the region to find a connected region with the same orientation
* within a precision (m_Prec)
*/
template <class TInputImage, class TPrecision>
bool
LineSegmentDetector<TInputImage, TPrecision>
::GrowRegion(InputIndexType index, IndexVectorType& region, double& regionAngle)
{
/** Add the point to the used list point*/
this->SetPixelToUsed(index);
/** Neighborhooding */
typedef itk::ConstNeighborhoodIterator<OutputImageType> NeighborhoodIteratorType;
typename NeighborhoodIteratorType::SizeType radius;
radius.Fill(1);
NeighborhoodIteratorType itNeigh(radius, m_MagnitudeFilter->GetOutput(),
m_MagnitudeFilter->GetOutput()->GetRequestedRegion());
NeighborhoodIteratorType itNeighDir(radius, m_OrientationFilter->GetOutput(),
m_OrientationFilter->GetOutput()-> GetRequestedRegion());
/** Vector where to store the point belonging to the current region*/
unsigned int neighSize = itNeigh.GetSize()[0] * itNeigh.GetSize()[1];
/** Add the first point to the region */
region.push_back(index);
double sumX = 0.;
double sumY = 0.;
/**
* Loop for searching regions
*/
for (unsigned int cpt = 0; cpt < region.size(); ++cpt)
{
itNeigh.SetLocation(region[cpt]);
itNeighDir.SetLocation(region[cpt]);
sumX += vcl_cos(*(itNeighDir.GetCenterValue()));
sumY += vcl_sin(*(itNeighDir.GetCenterValue()));
regionAngle = vcl_atan2(sumY, sumX);
unsigned int s = 0;
while (s < neighSize)
{
InputIndexType NeighIndex = itNeigh.GetIndex(s);
double angleComp = itNeighDir.GetPixel(s);
if (this->GetInput()->GetLargestPossibleRegion().IsInside(NeighIndex)) /** Check if the index is inside the image*/
{
if ((this->IsNotUsed(NeighIndex) || this->IsNotIni(NeighIndex)) && this->IsAligned(angleComp, regionAngle, m_Prec))
{
this->SetPixelToUsed(NeighIndex);
region.push_back(NeighIndex);
}
}
++s;
}
} /** End Searching loop*/
unsigned int nbPixels = this->GetInput()->GetLargestPossibleRegion().GetNumberOfPixels();
if (region.size() > m_MinimumRegionSize && region.size() < nbPixels / 4)
{
return EXIT_SUCCESS;
}
else
{
return EXIT_FAILURE;
}
}
/**************************************************************************************************************/
/**
* The method atan2 gives values of angles modulo PI, put the angle in a rang [0, Pi]
*/
template <class TInputImage, class TPrecision>
bool
LineSegmentDetector<TInputImage, TPrecision>
::IsAligned(double Angle, double regionAngle, double prec) const
{
double diff = Angle - regionAngle;
if (diff < 0.0) diff = -diff;
if (diff > 1.5 * CONST_PI)
{
diff -= CONST_2PI;
if (diff < 0.0) diff = -diff;
}
return diff < prec;
}
/**************************************************************************************************************/
/**
* compute the best rectangle possible that
*/
template <class TInputImage, class TPrecision>
typename LineSegmentDetector<TInputImage, TPrecision>
::RectangleType
LineSegmentDetector<TInputImage, TPrecision>
::Region2Rectangle(IndexVectorType region, double regionAngle)
{
/** Local Variables*/
double weight = 0., sumWeight = 0.;
double x = 0., y = 0.;
double l_min = 0., l_max = 0., l = 0., w = 0., w_min = 0., w_max = 0.;
/** Neighborhooding again*/
typedef itk::ConstNeighborhoodIterator<OutputImageType> NeighborhoodIteratorType;
typename NeighborhoodIteratorType::SizeType radius;
radius.Fill(0);
NeighborhoodIteratorType itNeigh(radius, m_MagnitudeFilter->GetOutput(),
m_MagnitudeFilter->GetOutput()->GetRequestedRegion());
/** Computing the center of the rectangle*/
IndexVectorIteratorType it = region.begin();
while (it != region.end())
{
itNeigh.SetLocation(*it);
weight = *itNeigh.GetCenterValue();
x += static_cast<double>((*it)[0]) * weight;
y += static_cast<double>((*it)[1]) * weight;
sumWeight += weight;
++it;
}
if (sumWeight < 1e-10)
{
x = 0.; y = 0.;
}
else
{
x /= sumWeight;
y /= sumWeight;
}
/** Compute the orientation of the region*/
double theta = this->ComputeRegionOrientation(region, x, y, regionAngle);
/* Length & Width of the rectangle **/
typedef std::vector<MagnitudePixelType> MagnitudeVector;
RegionType largestRegion = this->GetInput()->GetLargestPossibleRegion();
unsigned int Diagonal =
static_cast<unsigned int>(vnl_math_hypot(static_cast<double>(largestRegion.GetSize(1)), static_cast<double>(
largestRegion.GetSize(0))) + 2);
MagnitudeVector sum_l(2*Diagonal, itk::NumericTraits<MagnitudePixelType>::Zero);
MagnitudeVector sum_w(2*Diagonal, itk::NumericTraits<MagnitudePixelType>::Zero);
double dx = vcl_cos(theta);
double dy = vcl_sin(theta);
it = region.begin();
while (it != region.end())
{
itNeigh.SetLocation(*it);
weight = *itNeigh.GetCenterValue();
l = (static_cast<double>((*it)[0]) - x) * dx + (static_cast<double>((*it)[1]) - y) * dy;
w = -(static_cast<double>((*it)[0]) - x) * dy + (static_cast<double>((*it)[1]) - y) * dx;
if (l < l_min) l_min = l; if (l > l_max) l_max = l;
if (w < w_min) w_min = w; if (w > w_max) w_max = w;
sum_l[static_cast < int > (vcl_floor(l) + 0.5) + Diagonal] += static_cast<MagnitudePixelType>(weight);
sum_w[static_cast < int > (vcl_floor(w) + 0.5) + Diagonal] += static_cast<MagnitudePixelType>(weight);
++it;
}
/** Thresholdinq the width and the length*/
double sum_th = 0.01 * sumWeight; /* weight threshold for selecting region */
double s = 0.;
int i = 0;
for (s = 0.0, i = static_cast<int>(l_min); s < sum_th && i <= static_cast<int>(l_max); ++i)
s += sum_l[Diagonal + i];
double lb = (static_cast<double>(i - 1) - 0.5);
for (s = 0.0, i = static_cast<int>(l_max); s < sum_th && i >= static_cast<int>(l_min); i--)
s += sum_l[Diagonal + i];
double lf = (static_cast<double>(i + 1) + 0.5);
for (s = 0.0, i = static_cast<int>(w_min); s < sum_th && i <= static_cast<int>(w_max); ++i)
s += sum_w[Diagonal + i];
double wr = (static_cast<double>(i - 1) - 0.5);
for (s = 0.0, i = static_cast<int>(w_max); s < sum_th && i >= static_cast<int>(w_min); i--)
s += sum_w[Diagonal + i];
double wl = (static_cast<double>(i + 1) + 0.5);
/** Finally store the rectangle in vector this way :
* vec[0] = x1
* vec[1] = y1
* vec[2] = x2
* vec[3] = y2
* vec[4] = width
* vec[5] = theta
* vec[6] = prec = Pi/8
* vec[7] = p = 1/8
*/
RectangleType rec(8, 0.); // Definition of a
// rectangle : 8 components
if (vcl_abs(wl - wr)
- vcl_sqrt( static_cast<double> (largestRegion.GetSize(0) * largestRegion.GetSize(0) +
largestRegion.GetSize(1) * largestRegion.GetSize(1)))
< 1e-10 )
{
rec[0] = (x + lb * dx > 0) ? x + lb * dx : 0.;
rec[1] = (y + lb * dy > 0) ? y + lb * dy : 0.;
rec[2] = (x + lf * dx > 0) ? x + lf * dx : 0.;
rec[3] = (y + lf * dy > 0) ? y + lf * dy : 0;
rec[4] = wl - wr;
rec[5] = theta;
rec[6] = m_Prec;
rec[7] = m_DirectionsAllowed;
if (rec[4] - 1. < 1e-10) rec[4] = 1.;
}
return rec;
}
/**************************************************************************************************************/
/**
* Compute the orientation of a region , using an eigen Value analysis.
*/
template <class TInputImage, class TPrecision>
double
LineSegmentDetector<TInputImage, TPrecision>
::ComputeRegionOrientation(IndexVectorType region, double x, double y, double angleRegion) const
{
double Ixx = 0.0;
double Iyy = 0.0;
double Ixy = 0.0;
double theta = 0.;
double weight = 0., sum = 0.;
/** Neighborhooding again*/
typedef itk::ConstNeighborhoodIterator<OutputImageType> NeighborhoodIteratorType;
typename NeighborhoodIteratorType::SizeType radius;
radius.Fill(0);
NeighborhoodIteratorType itNeigh(radius, m_MagnitudeFilter->GetOutput(),
m_MagnitudeFilter->GetOutput()->GetRequestedRegion());
/** Computing the center of the rectangle*/
IndexVectorIteratorType it = region.begin();
while (it != region.end())
{
itNeigh.SetLocation(*it);
weight = *itNeigh.GetCenterValue();
double Iyy2 = static_cast<double>((*it)[0]) - x;
double Ixx2 = static_cast<double>((*it)[1]) - y;
Ixx += Ixx2 * Ixx2 * weight;
Iyy += Iyy2 * Iyy2 * weight;
Ixy -= Ixx2 * Iyy2 * weight;
sum += weight;
++it;
}
/** using te itk Eigen analysis*/
typedef itk::Matrix<double, 2, 2> MatrixType;
typedef std::vector<double> MatrixEigenType;
MatrixType Inertie, eigenVector;
MatrixEigenType eigenMatrix(2, 0.);
Inertie[1][1] = Ixx;
Inertie[0][0] = Iyy;
Inertie[0][1] = Ixy;
Inertie[1][0] = Ixy;
typedef itk::SymmetricEigenAnalysis<MatrixType, MatrixEigenType> EigenAnalysisType;
EigenAnalysisType eigenFilter(2);
eigenFilter.ComputeEigenValuesAndVectors(Inertie, eigenMatrix, eigenVector);
theta = vcl_atan2(eigenVector[1][1], -eigenVector[1][0]);
/* the previous procedure don't cares orientations,
so it could be wrong by 180 degrees.
here is corrected if necessary */
if (this->angle_diff(theta, angleRegion) > m_Prec) theta += CONST_PI;
return theta;
}
/**************************************************************************************************************/
/**
* Compute the difference betwenn 2 angles modulo 2_PI
*/
template <class TInputImage, class TPrecision>
double
LineSegmentDetector<TInputImage, TPrecision>
::angle_diff(double a, double b) const
{
a -= b;
while (a <= -CONST_PI)
a += CONST_2PI;
while (a > CONST_PI)
a -= CONST_2PI;
if (a < 0.0) a = -a;
return a;
}
/**************************************************************************************************************/
/**
* compute the number of false alarm of the rectangle
*/
template <class TInputImage, class TPrecision>
double
LineSegmentDetector<TInputImage, TPrecision>
::ComputeRectNFA(const RectangleType& rec) const
{
int NbAligned = 0;
double nfa_val = 0.;
/** Compute the NFA of the rectangle
* We Need : The number of : Points in the rec (Area of the rectangle)
* Aligned points with theta in the rectangle
*/
/** Compute the number of points aligned */
typedef otb::Rectangle<double> RectangleType;
RectangleType::Pointer rectangle = RectangleType::New();
/** Fill the rectangle with the points*/
for (int i = 0; i < 2; ++i)
{
typename RectangleType::VertexType vertex;
vertex[0] = rec[2 * i];
vertex[1] = rec[2 * i + 1];
rectangle->AddVertex(vertex);
}
rectangle->SetWidth(rec[4]);
rectangle->SetOrientation(rec[5]);
/** Get The Bounding Region*/
OutputImageDirRegionType region = m_OrientationFilter->GetOutput()->GetLargestPossibleRegion();
region.Crop(rectangle->GetBoundingRegion());
itk::ImageRegionIterator<OutputImageDirType> it(m_OrientationFilter->GetOutput(), region);
it.GoToBegin();
int pts = 0;
while (!it.IsAtEnd())
{
if (rectangle->IsInside(it.GetIndex()) &&
m_OrientationFilter->GetOutput()->GetBufferedRegion().IsInside(it.GetIndex()))
{
++pts;
if (this->IsAligned(it.Get(), rec[5] /*theta*/, rec[6] /*Prec*/)) NbAligned++;
}
++it;
}
/** Compute the NFA from the rectangle computed below*/
RegionType largestRegion = const_cast<Self*>(this)->GetInput()->GetLargestPossibleRegion();
double logNT = 5. * vcl_log10( static_cast<double>(largestRegion.GetNumberOfPixels()) ) / 2.;
nfa_val = NFA(pts, NbAligned, m_DirectionsAllowed, logNT);
return nfa_val;
}
/**************************************************************************************************************/
/*
compute logarithm of binomial NFA
NFA = NT.b(n, k, p)
log10 NFA = log10( NFA )
n, k, p - binomial parameters.
logNT - logarithm of Number of Tests
*/
template <class TInputImage, class TPrecision>
double
LineSegmentDetector<TInputImage, TPrecision>
::NFA(int n, int k, double p, double logNT) const
{
double val;
double n_d = static_cast<double>(n);
double k_d = static_cast<double>(k);
if (k == 0)
return -logNT;
// double x = p;
double a = k_d;
double b = n_d - k_d + 1.0;
val = -logNT - log10( dbetai_(&p, &a, &b) );
if (vnl_math_isinf(val)) /* approximate by the first term of the tail */
{
double x1 = n_d + 1.0;
double x2 = k_d + 1.0;
double x3 = n_d - k_d + 1.0;
val = -logNT - (dlngam_(&x1) - dlngam_(&x2) - dlngam_(&x3)) / CONST_LN10
- k_d * log10(p) - (n_d - k_d) * log10(1.0 - p);
}
return val;
}
/**
* Standard "PrintSelf" method
*/
template <class TInputImage, class TPrecision>
void
LineSegmentDetector<TInputImage, TPrecision>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
} // end namespace otb
#endif
|