This file is indexed.

/usr/include/OTB-5.8/otbLibSVMMachineLearningModel.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbLibSVMMachineLearningModel_txx
#define otbLibSVMMachineLearningModel_txx

#include <fstream>
#include "otbLibSVMMachineLearningModel.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::LibSVMMachineLearningModel()
{
  m_SVMestimator = SVMEstimatorType::New();
  m_SVMestimator->SetSVMType(C_SVC);
  m_SVMestimator->SetC(1.0);
  m_SVMestimator->SetKernelType(LINEAR);
  m_SVMestimator->SetParametersOptimization(false);
  m_SVMestimator->DoProbabilityEstimates(false);
  //m_SVMestimator->SetEpsilon(1e-6);
  this->m_IsRegressionSupported = true;
}


template <class TInputValue, class TOutputValue>
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::~LibSVMMachineLearningModel()
{
  //delete m_SVMModel;
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
  // Set up SVM's parameters
  // CvSVMParams params;
  // params.svm_type    = m_SVMType;
  // params.kernel_type = m_KernelType;
  // params.term_crit   = cvTermCriteria(m_TermCriteriaType, m_MaxIter, m_Epsilon);

  // // Train the SVM
  m_SVMestimator->SetInputSampleList(this->GetInputListSample());
  m_SVMestimator->SetTrainingSampleList(this->GetTargetListSample());

  m_SVMestimator->Update();

  this->m_ConfidenceIndex = this->GetDoProbabilityEstimates();
}

template <class TInputValue, class TOutputValue>
typename LibSVMMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  TargetSampleType target;

  MeasurementVectorFunctorType mfunctor;

  target = m_SVMestimator->GetModel()->EvaluateLabel(mfunctor(input));

  if (quality != ITK_NULLPTR)
    {
    if (!this->m_ConfidenceIndex)
      {
      itkExceptionMacro("Confidence index not available for this classifier !");
      }
    typename SVMEstimatorType::ModelType::ProbabilitiesVectorType probaVector =
        m_SVMestimator->GetModel()->EvaluateProbabilities(mfunctor(input));
    double maxProb = 0.0;
    double secProb = 0.0;
    for (unsigned int i=0 ; i<probaVector.Size() ; ++i)
      {
      if (maxProb < probaVector[i])
        {
          secProb = maxProb;
          maxProb = probaVector[i];
        }
      else if (secProb < probaVector[i])
        {
          secProb = probaVector[i];
        }
      }
    (*quality) = static_cast<ConfidenceValueType>(maxProb - secProb);
    }

  return target;
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & itkNotUsed(name))
{
  m_SVMestimator->GetModel()->SaveModel(filename.c_str());
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & itkNotUsed(name))
{
  m_SVMestimator->GetModel()->LoadModel(filename.c_str());

  this->m_ConfidenceIndex = m_SVMestimator->GetModel()->HasProbabilities();
}

template <class TInputValue, class TOutputValue>
bool
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
  //TODO: Rework.
  std::ifstream ifs;
  ifs.open(file.c_str());

  if(!ifs)
    {
    std::cerr<<"Could not read file "<<file<<std::endl;
    return false;
    }

  //Read only the first line.
  std::string line;
  std::getline(ifs, line);

  //if (line.find(m_SVMModel->getName()) != std::string::npos)
  if (line.find("svm_type") != std::string::npos)
    {
    //std::cout<<"Reading a libSVM model"<<std::endl;
    return true;
    }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif