/usr/include/OTB-5.8/otbLearningApplicationBase.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbLearningApplicationBase_txx
#define otbLearningApplicationBase_txx
#include "otbLearningApplicationBase.h"
// only need this filter as a dummy process object
#include "otbRGBAPixelConverter.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
LearningApplicationBase<TInputValue,TOutputValue>
::LearningApplicationBase() : m_RegressionFlag(false)
{
}
template <class TInputValue, class TOutputValue>
LearningApplicationBase<TInputValue,TOutputValue>
::~LearningApplicationBase()
{
ModelFactoryType::CleanFactories();
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::DoInit()
{
AddDocTag(Tags::Learning);
// main choice parameter that will contain all machine learning options
AddParameter(ParameterType_Choice, "classifier", "Classifier to use for the training");
SetParameterDescription("classifier", "Choice of the classifier to use for the training.");
//Group LibSVM
#ifdef OTB_USE_LIBSVM
InitLibSVMParams();
#endif
#ifdef OTB_USE_OPENCV
// OpenCV SVM implementation is buggy with linear kernel
// Users should use the libSVM implementation instead.
// InitSVMParams();
if (!m_RegressionFlag)
{
InitBoostParams(); // Regression not supported
}
InitDecisionTreeParams();
InitGradientBoostedTreeParams();
InitNeuralNetworkParams();
if (!m_RegressionFlag)
{
InitNormalBayesParams(); // Regression not supported
}
InitRandomForestsParams();
InitKNNParams();
#endif
#ifdef OTB_USE_SHARK
InitSharkRandomForestsParams();
#endif
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::Classify(typename ListSampleType::Pointer validationListSample,
typename TargetListSampleType::Pointer predictedList,
std::string modelPath)
{
// Setup fake reporter
RGBAPixelConverter<int,int>::Pointer dummyFilter =
RGBAPixelConverter<int,int>::New();
dummyFilter->SetProgress(0.0f);
this->AddProcess(dummyFilter,"Classify...");
dummyFilter->InvokeEvent(itk::StartEvent());
// load a machine learning model from file and predict the input sample list
ModelPointerType model = ModelFactoryType::CreateMachineLearningModel(modelPath,
ModelFactoryType::ReadMode);
if (model.IsNull())
{
otbAppLogFATAL(<< "Error when loading model " << modelPath);
}
model->Load(modelPath);
model->SetRegressionMode(this->m_RegressionFlag);
model->SetInputListSample(validationListSample);
model->SetTargetListSample(predictedList);
model->PredictAll();
// update reporter
dummyFilter->UpdateProgress(1.0f);
dummyFilter->InvokeEvent(itk::EndEvent());
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::Train(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
// Setup fake reporter
RGBAPixelConverter<int,int>::Pointer dummyFilter =
RGBAPixelConverter<int,int>::New();
dummyFilter->SetProgress(0.0f);
this->AddProcess(dummyFilter,"Training model...");
dummyFilter->InvokeEvent(itk::StartEvent());
// get the name of the chosen machine learning model
const std::string modelName = GetParameterString("classifier");
// call specific train function
if (modelName == "libsvm")
{
#ifdef OTB_USE_LIBSVM
TrainLibSVM(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module LIBSVM is not installed. You should consider turning OTB_USE_LIBSVM on during cmake configuration.");
#endif
}
if(modelName == "sharkrf")
{
#ifdef OTB_USE_SHARK
TrainSharkRandomForests(trainingListSample,trainingLabeledListSample,modelPath);
#else
otbAppLogFATAL("Module SharkLearning is not installed. You should consider turning OTB_USE_SHARK on during cmake configuration.");
#endif
}
// OpenCV SVM implementation is buggy with linear kernel
// Users should use the libSVM implementation instead.
// else if (modelName == "svm")
// {
// #ifdef OTB_USE_OPENCV
// TrainSVM(trainingListSample, trainingLabeledListSample, modelPath);
// #else
// otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
// #endif
// }
else if (modelName == "boost")
{
#ifdef OTB_USE_OPENCV
TrainBoost(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "dt")
{
#ifdef OTB_USE_OPENCV
TrainDecisionTree(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "gbt")
{
#ifdef OTB_USE_OPENCV
TrainGradientBoostedTree(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "ann")
{
#ifdef OTB_USE_OPENCV
TrainNeuralNetwork(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "bayes")
{
#ifdef OTB_USE_OPENCV
TrainNormalBayes(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "rf")
{
#ifdef OTB_USE_OPENCV
TrainRandomForests(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "knn")
{
#ifdef OTB_USE_OPENCV
TrainKNN(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
// update reporter
dummyFilter->UpdateProgress(1.0f);
dummyFilter->InvokeEvent(itk::EndEvent());
}
}
}
#endif
|