This file is indexed.

/usr/include/OTB-5.8/otbKNearestNeighborsMachineLearningModel.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbKNearestNeighborsMachineLearningModel_txx
#define otbKNearestNeighborsMachineLearningModel_txx

#include <boost/lexical_cast.hpp>
#include "otbKNearestNeighborsMachineLearningModel.h"
#include "otbOpenCVUtils.h"

#include <fstream>
#include <set>
#include "itkMacro.h"

namespace otb
{

template <class TInputValue, class TTargetValue>
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::KNearestNeighborsMachineLearningModel() :
 m_KNearestModel (new CvKNearest),
 m_K(32),
 m_DecisionRule(KNN_VOTING)
{
  this->m_ConfidenceIndex = true;
  this->m_IsRegressionSupported = true;
}


template <class TInputValue, class TTargetValue>
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::~KNearestNeighborsMachineLearningModel()
{
  delete m_KNearestModel;
}

/** Train the machine learning model */
template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Train()
{
  //convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);

  // update decision rule if needed
  if (this->m_RegressionMode)
    {
    if (this->m_DecisionRule == KNN_VOTING)
      {
      this->SetDecisionRule(KNN_MEAN);
      }
    }
  else
    {
    if (this->m_DecisionRule != KNN_VOTING)
      {
      this->SetDecisionRule(KNN_VOTING);
      }
    }

  //train the KNN model
  m_KNearestModel->train(samples, labels, cv::Mat(), this->m_RegressionMode, m_K, false);
}

template <class TInputValue, class TTargetValue>
typename KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::TargetSampleType
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  //convert listsample to Mat
  cv::Mat sample;
  otb::SampleToMat<InputSampleType>(input, sample);

  float result;
  cv::Mat nearest(1,m_K,CV_32FC1);
  result = m_KNearestModel->find_nearest(sample, m_K,ITK_NULLPTR,ITK_NULLPTR,&nearest,ITK_NULLPTR);

  // compute quality if asked (only happens in classification mode)
  if (quality != ITK_NULLPTR)
    {
    assert(!this->m_RegressionMode);
    unsigned int accuracy = 0;
    for (int k=0 ; k < m_K ; ++k)
      {
      if (nearest.at<float>(0,k) == result)
        {
        accuracy++;
        }
      }
    (*quality) = static_cast<ConfidenceValueType>(accuracy);
    }

  // Decision rule :
  //  VOTING is OpenCV default behaviour for classification
  //  MEAN is OpenCV default behaviour for regression
  //  MEDIAN : only case that must be handled here
  if (this->m_DecisionRule == KNN_MEDIAN)
    {
    std::multiset<float> values;
    for (int k=0 ; k < m_K ; ++k)
      {
      values.insert(nearest.at<float>(0,k));
      }
    std::multiset<float>::iterator median = values.begin();
    int pos = (m_K >> 1);
    for (int k=0 ; k < pos ; ++k , ++median) {}
    result = *median;
    }

  TargetSampleType target;

  target[0] = static_cast<TTargetValue>(result);
  return target;
}

template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Save(const std::string & filename, const std::string & itkNotUsed(name))
{
  //there is no m_KNearestModel->save(filename.c_str(), name.c_str()).
  //We need to save the K parameter, IsRegression flag, DecisionRule and the samples.

  std::ofstream ofs(filename.c_str());
  //Save K parameter and IsRegression flag.
  ofs << "K=" << m_K << "\n";
  ofs << "IsRegression=" << this->m_RegressionMode << "\n";
  // Save the DecisionRule if regression
  if (this->m_RegressionMode)
    {
    ofs << "DecisionRule=" << m_DecisionRule << "\n";
    }

  //Save the samples. First column is the Label and other columns are the sample data.
  typename InputListSampleType::ConstIterator sampleIt = this->GetInputListSample()->Begin();
  typename TargetListSampleType::ConstIterator labelIt = this->GetTargetListSample()->Begin();
  const unsigned int sampleSize = this->GetInputListSample()->GetMeasurementVectorSize();
  for(; sampleIt!=this->GetInputListSample()->End(); ++sampleIt,++labelIt)
  {
    // Retrieve sample
    typename InputListSampleType::MeasurementVectorType sample = sampleIt.GetMeasurementVector();
    ofs <<labelIt.GetMeasurementVector()[0];

    // Loop on sample size
    for(unsigned int i = 0; i < sampleSize; ++i)
    {
      ofs << " " << sample[i];
    }
    ofs <<"\n";
  }
  ofs.close();
}

template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Load(const std::string & filename, const std::string & itkNotUsed(name))
{
  //there is no m_KNearestModel->load(filename.c_str(), name.c_str());
  std::ifstream ifs(filename.c_str());
  if(!ifs)
  {
    itkExceptionMacro(<<"Could not read file "<<filename);
  }
  //first line is the K parameter of this algorithm.
  std::string line;
  std::getline(ifs, line);
  std::string::size_type pos = line.find_first_of("=", 0);
  std::string::size_type nextpos = line.find_first_of(" \n\r", pos+1);
  this->SetK(boost::lexical_cast<int>(line.substr(pos+1, nextpos-pos-1)));
  //second line is the IsRegression parameter
  std::getline(ifs, line);
  pos = line.find_first_of("=", 0);
  nextpos = line.find_first_of(" \n\r", pos+1);
  this->SetRegressionMode(boost::lexical_cast<bool>(line.substr(pos+1, nextpos-pos-1)));
  //third line is the DecisionRule parameter (only for regression)
  if (this->m_RegressionMode)
    {
    std::getline(ifs, line);
    pos = line.find_first_of("=", 0);
    nextpos = line.find_first_of(" \n\r", pos+1);
    this->SetDecisionRule(boost::lexical_cast<int>(line.substr(pos+1, nextpos-pos-1)));
    }
  //Clear previous listSample (if any)
  typename InputListSampleType::Pointer samples = InputListSampleType::New();
  typename TargetListSampleType::Pointer labels = TargetListSampleType::New();

  //Read a txt file. First column is the label, other columns are the sample data.
  unsigned int nbFeatures = 0;
  while (!ifs.eof())
  {
    std::getline(ifs, line);

    if(nbFeatures == 0)
      {
        nbFeatures = std::count(line.begin(),line.end(),' ');
      }

    if(line.size()>1)
    {
      // Parse label
      pos = line.find_first_of(" ", 0);
      TargetSampleType label;
      label[0] = static_cast<TargetValueType>(boost::lexical_cast<unsigned int>(line.substr(0, pos)));
      // Parse sample features
      InputSampleType sample(nbFeatures);
      sample.Fill(0);
      unsigned int id = 0;
      nextpos = line.find_first_of(" ", pos+1);
      while(nextpos != std::string::npos)
      {
        nextpos = line.find_first_of(" \n\r", pos+1);
        std::string subline = line.substr(pos+1, nextpos-pos-1);
        //sample[id] = static_cast<InputValueType>(boost::lexical_cast<float>(subline));
        sample[id] = atof(subline.c_str());
        pos = nextpos;
        id++;
      }
      samples->SetMeasurementVectorSize(itk::NumericTraits<InputSampleType>::GetLength(sample));
      samples->PushBack(sample);
      labels->PushBack(label);
    }
  }
  ifs.close();

  this->SetInputListSample(samples);
  this->SetTargetListSample(labels);
  this->Train();
}

template <class TInputValue, class TTargetValue>
bool
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::CanReadFile(const std::string & file)
{
  try
  {
    this->Load(file);
  }
  catch(...)
  {
    return false;
  }
  return true;
}

template <class TInputValue, class TTargetValue>
bool
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}


template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif