/usr/include/OTB-5.8/otbKNearestNeighborsMachineLearningModel.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbKNearestNeighborsMachineLearningModel_txx
#define otbKNearestNeighborsMachineLearningModel_txx
#include <boost/lexical_cast.hpp>
#include "otbKNearestNeighborsMachineLearningModel.h"
#include "otbOpenCVUtils.h"
#include <fstream>
#include <set>
#include "itkMacro.h"
namespace otb
{
template <class TInputValue, class TTargetValue>
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::KNearestNeighborsMachineLearningModel() :
m_KNearestModel (new CvKNearest),
m_K(32),
m_DecisionRule(KNN_VOTING)
{
this->m_ConfidenceIndex = true;
this->m_IsRegressionSupported = true;
}
template <class TInputValue, class TTargetValue>
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::~KNearestNeighborsMachineLearningModel()
{
delete m_KNearestModel;
}
/** Train the machine learning model */
template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Train()
{
//convert listsample to opencv matrix
cv::Mat samples;
otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);
cv::Mat labels;
otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);
// update decision rule if needed
if (this->m_RegressionMode)
{
if (this->m_DecisionRule == KNN_VOTING)
{
this->SetDecisionRule(KNN_MEAN);
}
}
else
{
if (this->m_DecisionRule != KNN_VOTING)
{
this->SetDecisionRule(KNN_VOTING);
}
}
//train the KNN model
m_KNearestModel->train(samples, labels, cv::Mat(), this->m_RegressionMode, m_K, false);
}
template <class TInputValue, class TTargetValue>
typename KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::TargetSampleType
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
//convert listsample to Mat
cv::Mat sample;
otb::SampleToMat<InputSampleType>(input, sample);
float result;
cv::Mat nearest(1,m_K,CV_32FC1);
result = m_KNearestModel->find_nearest(sample, m_K,ITK_NULLPTR,ITK_NULLPTR,&nearest,ITK_NULLPTR);
// compute quality if asked (only happens in classification mode)
if (quality != ITK_NULLPTR)
{
assert(!this->m_RegressionMode);
unsigned int accuracy = 0;
for (int k=0 ; k < m_K ; ++k)
{
if (nearest.at<float>(0,k) == result)
{
accuracy++;
}
}
(*quality) = static_cast<ConfidenceValueType>(accuracy);
}
// Decision rule :
// VOTING is OpenCV default behaviour for classification
// MEAN is OpenCV default behaviour for regression
// MEDIAN : only case that must be handled here
if (this->m_DecisionRule == KNN_MEDIAN)
{
std::multiset<float> values;
for (int k=0 ; k < m_K ; ++k)
{
values.insert(nearest.at<float>(0,k));
}
std::multiset<float>::iterator median = values.begin();
int pos = (m_K >> 1);
for (int k=0 ; k < pos ; ++k , ++median) {}
result = *median;
}
TargetSampleType target;
target[0] = static_cast<TTargetValue>(result);
return target;
}
template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Save(const std::string & filename, const std::string & itkNotUsed(name))
{
//there is no m_KNearestModel->save(filename.c_str(), name.c_str()).
//We need to save the K parameter, IsRegression flag, DecisionRule and the samples.
std::ofstream ofs(filename.c_str());
//Save K parameter and IsRegression flag.
ofs << "K=" << m_K << "\n";
ofs << "IsRegression=" << this->m_RegressionMode << "\n";
// Save the DecisionRule if regression
if (this->m_RegressionMode)
{
ofs << "DecisionRule=" << m_DecisionRule << "\n";
}
//Save the samples. First column is the Label and other columns are the sample data.
typename InputListSampleType::ConstIterator sampleIt = this->GetInputListSample()->Begin();
typename TargetListSampleType::ConstIterator labelIt = this->GetTargetListSample()->Begin();
const unsigned int sampleSize = this->GetInputListSample()->GetMeasurementVectorSize();
for(; sampleIt!=this->GetInputListSample()->End(); ++sampleIt,++labelIt)
{
// Retrieve sample
typename InputListSampleType::MeasurementVectorType sample = sampleIt.GetMeasurementVector();
ofs <<labelIt.GetMeasurementVector()[0];
// Loop on sample size
for(unsigned int i = 0; i < sampleSize; ++i)
{
ofs << " " << sample[i];
}
ofs <<"\n";
}
ofs.close();
}
template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::Load(const std::string & filename, const std::string & itkNotUsed(name))
{
//there is no m_KNearestModel->load(filename.c_str(), name.c_str());
std::ifstream ifs(filename.c_str());
if(!ifs)
{
itkExceptionMacro(<<"Could not read file "<<filename);
}
//first line is the K parameter of this algorithm.
std::string line;
std::getline(ifs, line);
std::string::size_type pos = line.find_first_of("=", 0);
std::string::size_type nextpos = line.find_first_of(" \n\r", pos+1);
this->SetK(boost::lexical_cast<int>(line.substr(pos+1, nextpos-pos-1)));
//second line is the IsRegression parameter
std::getline(ifs, line);
pos = line.find_first_of("=", 0);
nextpos = line.find_first_of(" \n\r", pos+1);
this->SetRegressionMode(boost::lexical_cast<bool>(line.substr(pos+1, nextpos-pos-1)));
//third line is the DecisionRule parameter (only for regression)
if (this->m_RegressionMode)
{
std::getline(ifs, line);
pos = line.find_first_of("=", 0);
nextpos = line.find_first_of(" \n\r", pos+1);
this->SetDecisionRule(boost::lexical_cast<int>(line.substr(pos+1, nextpos-pos-1)));
}
//Clear previous listSample (if any)
typename InputListSampleType::Pointer samples = InputListSampleType::New();
typename TargetListSampleType::Pointer labels = TargetListSampleType::New();
//Read a txt file. First column is the label, other columns are the sample data.
unsigned int nbFeatures = 0;
while (!ifs.eof())
{
std::getline(ifs, line);
if(nbFeatures == 0)
{
nbFeatures = std::count(line.begin(),line.end(),' ');
}
if(line.size()>1)
{
// Parse label
pos = line.find_first_of(" ", 0);
TargetSampleType label;
label[0] = static_cast<TargetValueType>(boost::lexical_cast<unsigned int>(line.substr(0, pos)));
// Parse sample features
InputSampleType sample(nbFeatures);
sample.Fill(0);
unsigned int id = 0;
nextpos = line.find_first_of(" ", pos+1);
while(nextpos != std::string::npos)
{
nextpos = line.find_first_of(" \n\r", pos+1);
std::string subline = line.substr(pos+1, nextpos-pos-1);
//sample[id] = static_cast<InputValueType>(boost::lexical_cast<float>(subline));
sample[id] = atof(subline.c_str());
pos = nextpos;
id++;
}
samples->SetMeasurementVectorSize(itk::NumericTraits<InputSampleType>::GetLength(sample));
samples->PushBack(sample);
labels->PushBack(label);
}
}
ifs.close();
this->SetInputListSample(samples);
this->SetTargetListSample(labels);
this->Train();
}
template <class TInputValue, class TTargetValue>
bool
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::CanReadFile(const std::string & file)
{
try
{
this->Load(file);
}
catch(...)
{
return false;
}
return true;
}
template <class TInputValue, class TTargetValue>
bool
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
return false;
}
template <class TInputValue, class TTargetValue>
void
KNearestNeighborsMachineLearningModel<TInputValue,TTargetValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
// Call superclass implementation
Superclass::PrintSelf(os,indent);
}
} //end namespace otb
#endif
|