This file is indexed.

/usr/include/OTB-5.8/otbInverseLogPolarTransform.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbInverseLogPolarTransform_txx
#define otbInverseLogPolarTransform_txx

#include "otbInverseLogPolarTransform.h"
#include "otbMacro.h"
#include "otbMath.h"

namespace otb
{
/**
 * Constructor.
 */
template <class TScalarType>
InverseLogPolarTransform<TScalarType>
::InverseLogPolarTransform()
  : Superclass(4)
{
  m_Center[0] = 0.0;
  m_Center[1] = 0.0;
  m_Scale[0] = 1.0;
  m_Scale[1] = 1.0;
}
/**
 * Destructor.
 */
template <class TScalarType>
InverseLogPolarTransform<TScalarType>
::~InverseLogPolarTransform()
{}
/**
 * Set the transform parameters through the standard interface.
 * \param parameters The parameters of the transform.
  */
template <class TScalarType>
void
InverseLogPolarTransform<TScalarType>
::SetParameters(const ParametersType& parameters)
{
  m_Center[0] = parameters[0];
  m_Center[1] = parameters[1];
  m_Scale[0] = parameters[2];
  m_Scale[1] = parameters[3];
  otbMsgDebugMacro(<< "Call To SetParameters: Center=" << m_Center << ", Scale=" << m_Scale);
  this->m_Parameters = parameters;
  this->Modified();
}
/**
 * Get the transform parameters through the standard interface.
 * \return The parameters of the transform.
 */
template <class TScalarType>
typename InverseLogPolarTransform<TScalarType>
::ParametersType&
InverseLogPolarTransform<TScalarType>
::GetParameters(void) const
{
  // Filling parameters vector
  this->m_Parameters[0] = m_Center[0];
  this->m_Parameters[1] = m_Center[1];
  this->m_Parameters[2] = m_Scale[0];
  this->m_Parameters[3] = m_Scale[1];

  return this->m_Parameters;
}

/**
 * Transform a point.
 * \param point The point to transform.
 * \return The transformed point.
 */
template <class TScalarType>
typename InverseLogPolarTransform<TScalarType>
::OutputPointType
InverseLogPolarTransform<TScalarType>
::TransformPoint(const InputPointType& point) const
{
  OutputPointType result;
  double          rho = vcl_sqrt(vcl_pow(point[0] - m_Center[0], 2) + vcl_pow(point[1] - m_Center[1], 2));
  if (rho > 0)
    {
    result[0] = (1. / m_Scale[0]) * vcl_asin((point[1] - m_Center[1]) / rho);
    // degree conversion
    result[0] = result[0] * (180. / CONST_PI);
    // Deplacing the range to [0, 90], [270, 360]
    result[0] = result[0] > 0. ? result[0] : result[0] + 360.;
    // Avoiding asin indetermination
    if ((point[0] - m_Center[0]) >= 0)
      {
      result[0] = result[0] < 90. ? result[0] + 90. : result[0] - 90.;
      }
    result[1] = (1. / m_Scale[1]) * vcl_log(rho);
    // otbMsgDebugMacro(<<vcl_log(vcl_pow(point[0]-m_Center[0], 2)+vcl_pow(point[1]-m_Center[1], 2)));
    }
  else
    {
    // for rho=0, reject the point outside the angular range to avoid nan error
    result[0] = 400.;
    result[1] = 0.;
    }
  return result;
}
/**
 * Transform a vector representing a point.
 * \param vector The point to transform.
 * \return The transformed point.
 */
template <class TScalarType>
typename InverseLogPolarTransform<TScalarType>
::OutputVectorType
InverseLogPolarTransform<TScalarType>
::TransformVector(const InputVectorType& vector) const
{
  OutputVectorType result;
  double           rho = vcl_sqrt(vcl_pow(vector[0] - m_Center[0], 2) + vcl_pow(vector[1] - m_Center[1], 2));
  if (rho > 0)
    {
    result[0] = (1 / m_Scale[0]) * vcl_asin((vector[1] - m_Center[1]) / rho);
    // degree conversion
    result[0] = result[0] * (180 / CONST_PI);
    // Deplacing the range to [0, 90], [270, 360]
    result[0] = result[0] > 0 ? result[0] : result[0] + 360;
    // Avoiding asin indetermination
    if ((vector[0] - m_Center[0]) >= 0)
      {
      result[0] = result[0] < 90 ? result[0] + 90 : result[0] - 90;
      }
    result[1] = (1 / m_Scale[1]) * vcl_log(rho);
    // otbMsgDebugMacro(<<vcl_log(vcl_pow(vector[0]-m_Center[0], 2)+vcl_pow(vector[1]-m_Center[1], 2)));
    }
  else
    {
    // for rho=0, reject the vector outside the angular range to avoid nan error
    result[0] = 400;
    result[1] = 0;
    }
  return result;
}
/**
 * Transform a vnl vector representing a vector.
 * \param vector The vector to transform.
 * \return The transformed vector.
 */
template <class TScalarType>
typename InverseLogPolarTransform<TScalarType>
::OutputVnlVectorType
InverseLogPolarTransform<TScalarType>
::TransformVector(const InputVnlVectorType& vector) const
{
  OutputVnlVectorType result;
  double              rho = vcl_sqrt(vcl_pow(vector[0], 2) + vcl_pow(vector[1], 2));
  if (rho > 0)
    {
    result[0] = (1 / m_Scale[0]) * vcl_asin((vector[1] - m_Center[1]) / rho);
    // degree conversion
    result[0] = result[0] * (180 / CONST_PI);
    // Deplacing the range to [0, 90], [270, 360]
    result[0] = result[0] > 0 ? result[0] : result[0] + 360;
    // Avoiding vcl_asin indetermination
    if ((vector[0] - m_Center[0]) >= 0)
      {
      result[0] = result[0] < 90 ? result[0] + 90 : result[0] - 90;
      }
    result[1] = (1 / m_Scale[1]) * vcl_log(rho);
    // otbMsgDebugMacro(<<log(vcl_pow(vector[0]-m_Center[0], 2)+vcl_pow(vector[1]-m_Center[1], 2)));
    }
  else
    {
    // for rho=0, reject the vector outside the angular range to avoid nan error
    result[0] = 400;
    result[1] = 0;
    }
  return result;
}
/**
 * PrintSelf method.
 */
template <class TScalarType>
void
InverseLogPolarTransform<TScalarType>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Center: " << m_Center << std::endl;
  os << indent << "Scale: " << m_Scale << std::endl;
}

} // end namespace otb
#endif