/usr/include/OTB-5.8/otbImageToImageRCC8Calculator.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbImageToImageRCC8Calculator_txx
#define otbImageToImageRCC8Calculator_txx
#include "otbImageToImageRCC8Calculator.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkBinaryDilateImageFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "itkInvertIntensityImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkAndImageFilter.h"
#include "itkImageRegionIterator.h"
#include "otbBinaryImageMinimalBoundingRegionCalculator.h"
#include "otbMacro.h"
//TODELETE #include "otbImageFileWriter.h"
//TODELETE #include "itkCastImageFilter.h"
namespace otb
{
/**
* Constructor
*/
template<class TInputImage>
ImageToImageRCC8Calculator<TInputImage>
::ImageToImageRCC8Calculator()
{
m_Value = OTB_RCC8_DC;
m_InsideValue1 = static_cast<PixelType>(255);
m_InsideValue2 = static_cast<PixelType>(255);
m_Level1APrioriKnowledge = false;
m_Level3APrioriKnowledge = false;
this->SetNumberOfRequiredInputs(2);
}
/**
* Set the first input image.
* \param image
*/
template<class TInputImage>
void
ImageToImageRCC8Calculator<TInputImage>
::SetInput1(ImageType * image)
{
this->SetNthInput(0, const_cast<ImageType *>(image));
}
/**
* Set the second input image.
* \param image
*/
template<class TInputImage>
void
ImageToImageRCC8Calculator<TInputImage>
::SetInput2(ImageType * image)
{
this->SetNthInput(1, const_cast<ImageType *>(image));
}
/**
* Get the first input image.
* \return The first input image.
*/
template<class TInputImage>
typename ImageToImageRCC8Calculator<TInputImage>
::ImageType*
ImageToImageRCC8Calculator<TInputImage>
::GetInput1(void)
{
return dynamic_cast<ImageType*>(this->itk::ProcessObject::GetInput(0));
}
/**
* Get the second input image.
* \return The second input image.
*/
template<class TInputImage>
typename ImageToImageRCC8Calculator<TInputImage>
::ImageType*
ImageToImageRCC8Calculator<TInputImage>
::GetInput2(void)
{
return dynamic_cast<ImageType*>(this->itk::ProcessObject::GetInput(1));
}
/**
* Get the RCC8 relation.
* \return The RCC8 relation value.
*/
template <class TInputImage>
typename ImageToImageRCC8Calculator<TInputImage>
::RCC8ValueType
ImageToImageRCC8Calculator<TInputImage>
::GetValue(void)
{
return m_Value;
}
/**
* Compute the minimal image region required.
* \return The minimal region required.
*/
template <class TInputImage>
typename ImageToImageRCC8Calculator<TInputImage>
::RegionType
ImageToImageRCC8Calculator<TInputImage>
::ComputeMinimalRegion(void)
{
// Input images pointers
typename ImageType::Pointer image1 = this->GetInput1();
typename ImageType::Pointer image2 = this->GetInput2();
typename ImageType::RegionType region1, region2, region;
typedef otb::BinaryImageMinimalBoundingRegionCalculator<ImageType> RegionCalculator;
typename RegionCalculator::Pointer rc = RegionCalculator::New();
rc->SetInput(image1);
rc->SetPad(2);
rc->SetInsideValue(this->GetInsideValue1());
rc->Update();
region1 = rc->GetRegion();
rc = RegionCalculator::New();
rc->SetInput(image2);
rc->SetPad(2);
rc->SetInsideValue(this->GetInsideValue2());
rc->Update();
region2 = rc->GetRegion();
// otbMsgDebugMacro(<<"RCC8Calculator->ComputeMinimalRegion() Region1: index: "<<region1.GetIndex()<<" size: "<<region1.GetSize());
// otbMsgDebugMacro(<<"RCC8Calculator->ComputeMinimalRegion() Region2: index: "<<region2.GetIndex()<<" size: "<<region2.GetSize());
//TODELETE std::cout<<"RCC8Calculator->ComputeMinimalRegion() Region1: index: "<<region1.GetIndex()<<" size: "<<region1.GetSize()<<std::endl;
//TODELETE std::cout<<"RCC8Calculator->ComputeMinimalRegion() Region2: index: "<<region2.GetIndex()<<" size: "<<region2.GetSize()<<std::endl;
typename ImageType::SizeType size;
typename ImageType::IndexType index;
for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)
{
index[i] = std::min(region1.GetIndex()[i], region2.GetIndex()[i]);
int potSize = std::max(region1.GetIndex()[i] + region1.GetSize()[i],
region2.GetIndex()[i] + region2.GetSize()[i]);
size[i] = (potSize - index[i] < 0 ? 0 : potSize - index[i]);
}
region.SetIndex(index);
region.SetSize(size);
region.PadByRadius(2);
region.Crop(image1->GetLargestPossibleRegion());
region.Crop(image2->GetLargestPossibleRegion());
// otbMsgDebugMacro(<<"RCC8Calculator->ComputeMinimalRegion(): index: "<<index<<" size: "<<size);
//TODELETE std::cout<<"RCC8Calculator->ComputeMinimalRegion(): index: "<<index<<" size: "<<size<<std::endl;
return region;
}
/**
* Compute a bool image of minimal ROI size, surrounded by a false padding, and corresponding
* to the input image.
* \param image The image to convert.
* \param insideValue The inside value.
* \return The converted image
*/
template<class TInputImage>
typename ImageToImageRCC8Calculator<TInputImage>
::BoolImagePointerType
ImageToImageRCC8Calculator<TInputImage>
::ConvertToBoolImage(ImagePointerType image, PixelType insideValue)
{
typedef itk::ImageRegionConstIterator<ImageType> ConstIterator;
typedef itk::ImageRegionIterator<BoolImageType> Iterator;
typename BoolImageType::Pointer output = BoolImageType::New();
typename BoolImageType::SizeType boolImageSize;
boolImageSize[0] = m_MinimalROI.GetSize()[0] + 2;
boolImageSize[1] = m_MinimalROI.GetSize()[1] + 2;
typename BoolImageType::IndexType boolImageIndex;
boolImageIndex[0] = m_MinimalROI.GetIndex()[0] - 1;
boolImageIndex[1] = m_MinimalROI.GetIndex()[1] - 1;
//otbMsgDebugMacro(<<"RCC8Calculator->ConvertToBoolImage() size: "<<boolImageSize<<" index: "<<boolImageIndex);
typename BoolImageType::RegionType boolRegion;
boolRegion.SetSize(boolImageSize);
boolRegion.SetIndex(boolImageIndex);
output->SetRegions(boolRegion);
output->Allocate();
output->FillBuffer(false);
ConstIterator inputIt(image, m_MinimalROI);
Iterator outputIt(output, m_MinimalROI);
inputIt.GoToBegin();
outputIt.GoToBegin();
while (!inputIt.IsAtEnd() && !outputIt.IsAtEnd())
{
outputIt.Set(inputIt.Get() == insideValue);
++inputIt;
++outputIt;
}
return output;
}
/**
* Compute the intersection between regions edges.
* \return true if the intersection is not empty.
*/
template<class TInputImage>
bool
ImageToImageRCC8Calculator<TInputImage>
::ComputeEdgeEdgeBool(void)
{
/// Definition of the Filters used to compute the boolean
typedef itk::SubtractImageFilter<BoolImageType, BoolImageType,
BoolImageType>
SubtractFilterType;
typedef itk::BinaryBallStructuringElement<bool,
BoolImageType::ImageDimension>
BinaryBallStructuringElementType;
typedef itk::BinaryDilateImageFilter<BoolImageType, BoolImageType, BinaryBallStructuringElementType> DilateFilterType;
typedef itk::AndImageFilter<BoolImageType, BoolImageType, BoolImageType> AndFilterType;
/// Declaration and instantiation
typename DilateFilterType::Pointer dilateFilter1 = DilateFilterType::New();
typename DilateFilterType::Pointer dilateFilter2 = DilateFilterType::New();
typename SubtractFilterType::Pointer subtractFilter1 = SubtractFilterType::New();
typename SubtractFilterType::Pointer subtractFilter2 = SubtractFilterType::New();
typename AndFilterType::Pointer andFilter = AndFilterType::New();
/// Configuration of the erosion filter
BinaryBallStructuringElementType structElement1, structElement2;
structElement1.SetRadius(1);
structElement2.SetRadius(1);
structElement1.CreateStructuringElement();
structElement2.CreateStructuringElement();
dilateFilter1->SetKernel(structElement1);
dilateFilter2->SetKernel(structElement2);
/// The erosion is performed to get the surrounding edge of this
/// region by subtraction to the original image
dilateFilter1->SetInput(m_BoolImage1);
dilateFilter1->Update();
subtractFilter1->SetInput2(m_BoolImage1);
subtractFilter1->SetInput1(dilateFilter1->GetOutput());
subtractFilter1->Update();
/// The erosion is performed to get the surrounding edge of this
/// region by subtraction to the original image
dilateFilter2->SetInput(m_BoolImage2);
dilateFilter2->Update();
subtractFilter2->SetInput2(m_BoolImage2);
subtractFilter2->SetInput1(dilateFilter2->GetOutput());
subtractFilter2->Update();
/// Now we can compute the intersection between the 2 edges
andFilter->SetInput1(subtractFilter1->GetOutput());
andFilter->SetInput2(subtractFilter2->GetOutput());
andFilter->Update();
/// test if the intersection is empty or not
return this->IsBoolImageNotEmpty(andFilter->GetOutput());
}
/**
* Compute the intersection between exterior of region1 and
* interior of region2.
* \return true if the intersection is not empty.
*/
template<class TInputImage>
bool
ImageToImageRCC8Calculator<TInputImage>
::ComputeExterInterBool(void)
{
/// Definition of the filters used
typedef itk::InvertIntensityImageFilter<BoolImageType, BoolImageType> InvertFilterType;
typedef itk::AndImageFilter<BoolImageType, BoolImageType, BoolImageType> AndFilterType;
/// Declaration and instantiation
typename InvertFilterType::Pointer invert = InvertFilterType::New();
typename AndFilterType::Pointer andFilter = AndFilterType::New();
/// The exterior is the inverted input image
invert->SetMaximum(true);
invert->SetInput(m_BoolImage1);
andFilter->SetInput1(m_BoolImage2);
andFilter->SetInput2(invert->GetOutput());
andFilter->Update();
/// test if the intersection is empty or not
return IsBoolImageNotEmpty(andFilter->GetOutput());
}
/**
* Compute the intersection between interior of region1 and
* exterior of region2.
* \return true if the intersection is not empty.
*/
template<class TInputImage>
bool
ImageToImageRCC8Calculator<TInputImage>
::ComputeInterExterBool(void)
{
/// Definition of the filters used
typedef itk::InvertIntensityImageFilter<BoolImageType, BoolImageType> InvertFilterType;
typedef itk::AndImageFilter<BoolImageType, BoolImageType, BoolImageType> AndFilterType;
//TODELETE typedef otb::Image<unsigned char, 2> TmpImageType;
//TODELETE typedef itk::CastImageFilter<BoolImageType, TmpImageType> CastFilterType;
//TODELETE typedef ImageFileWriter<TmpImageType> WriterType;
/// Declaration and instantiation
typename InvertFilterType::Pointer invert = InvertFilterType::New();
typename AndFilterType::Pointer andFilter = AndFilterType::New();
/// The exterior is the inverted input image
invert->SetMaximum(true);
invert->SetInput(m_BoolImage2);
//TODELETE typename CastFilterType::Pointer caster = CastFilterType::New();
//TODELETE caster->SetInput(invert->GetOutput());
//TODELETE typename WriterType::Pointer writer = WriterType::New();
//TODELETE writer->SetFileName("invert.tif");
//TODELETE writer->SetInput(caster->GetOutput());
//TODELETE writer->Update();
andFilter->SetInput1(m_BoolImage1);
andFilter->SetInput2(invert->GetOutput());
andFilter->Update();
//TODELETE caster = CastFilterType::New();
//TODELETE caster->SetInput(andFilter->GetOutput());
//TODELETE writer = WriterType::New();
//TODELETE writer->SetFileName("and.tif");
//TODELETE writer->SetInput(caster->GetOutput());
//TODELETE writer->Update();
/// test if the intersection is empty or not
return IsBoolImageNotEmpty(andFilter->GetOutput());
}
/**
* Compute the intersection between regions interiors.
* \return true if the intersection is not empty.
*/
template<class TInputImage>
bool
ImageToImageRCC8Calculator<TInputImage>
::ComputeInterInterBool(void)
{
/// Definition of the filters used
typedef itk::AndImageFilter<BoolImageType, BoolImageType, BoolImageType> AndFilterType;
/// Declaration and instantiation
typename AndFilterType::Pointer andFilter = AndFilterType::New();
/// The exterior is the inverted input image
andFilter->SetInput1(m_BoolImage1);
andFilter->SetInput2(m_BoolImage2);
andFilter->Update();
/// test if the intersection is empty or not
return IsBoolImageNotEmpty(andFilter->GetOutput());
}
/**
* Compute the relation value from the input booleans. Please note
* that the actual computed value is set to the m_Value parameters, and has
* nothing to do with the returned boolean, which indicates if the determination
* process was successful.
* \param edgeEdgeBool True if edge-edge intersection is not empty.
* \param interExterBool True if interior-exterior intersection is not empty.
* \param exterInterBool True if exterior-interior intersection is not empty.
* \return True if the decision process was successful.
*/
template<class TInputImage>
bool
ImageToImageRCC8Calculator<TInputImage>
::ComputeRelation(bool edgeEdgeBool, bool interExterBool, bool exterInterBool)
{
// otbMsgDebugMacro(<<"RCC8Calculator->ComputeRelation()");
// This decision process is based on a decision tree
if ((!interExterBool) && (edgeEdgeBool) && (!exterInterBool))
{
m_Value = OTB_RCC8_EQ;
return true;
}
else if ((!interExterBool) && (edgeEdgeBool) && (exterInterBool))
{
m_Value = OTB_RCC8_TPP;
return true;
}
else if ((interExterBool) && (!edgeEdgeBool) && (!exterInterBool))
{
m_Value = OTB_RCC8_NTPPI;
return true;
}
else if ((interExterBool) && (!edgeEdgeBool) && (exterInterBool))
{
m_Value = OTB_RCC8_DC;
return true;
}
else if ((interExterBool) && (edgeEdgeBool) && (!exterInterBool))
{
m_Value = OTB_RCC8_TPPI;
return true;
}
else
{
return false;
}
}
/**
* Test if the boolean image is totally black or not. This is a based on the lazy operator
* paradigm.
* \param image The image to test.
* \return True or false.
*/
template<class TInputImage>
bool
ImageToImageRCC8Calculator<TInputImage>
::IsBoolImageNotEmpty(BoolImagePointerType image)
{
typedef itk::ImageRegionConstIterator<BoolImageType> IteratorType;
// TODO : we'll eventually need to change something.
IteratorType it(image, image->GetLargestPossibleRegion());
it.GoToBegin();
while (!it.IsAtEnd())
{
if (it.Get())
{
return true;
}
++it;
}
return false;
}
/**
* Main computation method.
*/
template <class TInputImage>
void
ImageToImageRCC8Calculator<TInputImage>
::GenerateData(void)
{
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData()");
/// First we compute the minimal region of interest we will use for the relation computation
m_MinimalROI = this->ComputeMinimalRegion();
/// If they are disjoint, the answer is trivial
if ((m_MinimalROI.GetSize()[0] <= 1) || (m_MinimalROI.GetSize()[1] <= 1))
{
/// The relation is DC
m_Value = OTB_RCC8_DC;
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): Disjoint regions");
}
else
{
/// else each input images is cast to boolean type and reduced to
// the minimal region
m_BoolImage1 = ConvertToBoolImage(this->GetInput1(), m_InsideValue1);
m_BoolImage2 = ConvertToBoolImage(this->GetInput2(), m_InsideValue2);
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): Bool images computed: "<<m_BoolImage1->GetLargestPossibleRegion().GetSize());
/// Then the boolean which will be used to determine the relation
/// are declared
bool edgeEdgeBool, interExterBool, exterInterBool, interInterBool;
/// The boolean edgeEdge is needed in each case, so it si computed
/// now
edgeEdgeBool = ComputeEdgeEdgeBool();
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): edgeEdge "<<edgeEdgeBool);
//TODELETE std::cout<<"RCC8Calculator->GenerateData(): edgeEdge "<<edgeEdgeBool<<std::endl;
/// Here comes the outside knowledge
if (this->GetLevel1APrioriKnowledge())
{
/// If the Level1APrioriKnowledge is set, then the
/// interExterBool is set to true
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): Level1APrioriKnowledge.");
interExterBool = true;
}
else
{
/// Else it must be computed
interExterBool = ComputeInterExterBool();
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): interExter "<<interExterBool);
}
/// At this stage we can determine if the relation is of type NTPP
//TODELETE std::cout<<"RCC8Calculator->GenerateData(): interExter "<<interExterBool<<std::endl;
if ((!interExterBool) && (!edgeEdgeBool))
{
m_Value = OTB_RCC8_NTPP;
}
else
{
/// If not, we must consider the intersection between exterior
if (this->GetLevel3APrioriKnowledge())
{
/// If the Level3APRioriKnowledge flag is set, this boolean
/// can be determined from the two others
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): Level3APrioriKnowledge.");
exterInterBool = true;
}
else
{
/// Else it must be computed
exterInterBool = ComputeExterInterBool();
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): ExterInter "<<exterInterBool);
}
//TODELETE std::cout<<"RCC8Calculator->GenerateData(): ExterInter "<<exterInterBool<<std::endl;
/// If it is not sufficient to compute the relation
if (!ComputeRelation(edgeEdgeBool, interExterBool, exterInterBool))
{
/// Compute the last boolean
interInterBool = ComputeInterInterBool();
//TODELETE std::cout<<"RCC8Calculator->GenerateData(): InterInter "<<interInterBool<<std::endl;
// otbMsgDebugMacro(<<"RCC8Calculator->GenerateData(): InterInter "<<interInterBool);
/// Which allow the full determination
if ((interExterBool) && (edgeEdgeBool) && (exterInterBool) && (!interInterBool))
{
m_Value = OTB_RCC8_EC;
}
else
{
m_Value = OTB_RCC8_PO;
}
}
}
}
}
/**
* PrintSelf method
*/
template<class TInputImage>
void
ImageToImageRCC8Calculator<TInputImage>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
} // end namespace itk
#endif
|