This file is indexed.

/usr/include/OTB-5.8/otbImageRegionAdaptativeSplitter.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbImageRegionAdaptativeSplitter_txx
#define otbImageRegionAdaptativeSplitter_txx

#include "otbImageRegionAdaptativeSplitter.h"
#include "otbMath.h"
#include "otbMacro.h"

// Defaut when no tile hint available
#include "otbImageRegionSquareTileSplitter.h"

namespace otb
{

template <unsigned int VImageDimension>
unsigned int
ImageRegionAdaptativeSplitter<VImageDimension>
::GetNumberOfSplits(const RegionType& region, unsigned int requestedNumber)
{
  // Set parameters
  this->SetImageRegion(region);
  this->SetRequestedNumberOfSplits(requestedNumber);

  // Check if we need to compute split map agagin
  m_Lock.Lock();
  if(!m_IsUpToDate)
    {
    // Do so if we need to
    this->EstimateSplitMap();
    }
  m_Lock.Unlock();

  // Return the size of the split map
  return m_StreamVector.size();
}

template <unsigned int VImageDimension>
itk::ImageRegion<VImageDimension>
ImageRegionAdaptativeSplitter<VImageDimension>
::GetSplit(unsigned int i, unsigned int itkNotUsed(numberOfPieces), const RegionType& region)
{
  // Set parameters
  this->SetImageRegion(region);

  // Check if we need to compute split map agagin
  m_Lock.Lock();
  if(!m_IsUpToDate)
    {
    // Do so if we need to
    this->EstimateSplitMap();
    }
  m_Lock.Unlock();

  // Return the requested split
  return m_StreamVector.at(i);
}

template <unsigned int VImageDimension>
void
ImageRegionAdaptativeSplitter<VImageDimension>
::EstimateSplitMap()
{
  // Clear previous split map
  m_StreamVector.clear();

  // Handle trivial case
  if(m_RequestedNumberOfSplits == 1 || m_RequestedNumberOfSplits == 0)
    {
    m_StreamVector.push_back(m_ImageRegion);
    m_IsUpToDate = true;
    return;
    }
  // Handle the empty hint case and the case where VImageDimension != 2
  if(m_TileHint[0] == 0 || m_TileHint[1] == 0 || VImageDimension != 2)
    {
    // In this case we fallback to the classical tile splitter
    typename otb::ImageRegionSquareTileSplitter<VImageDimension>::Pointer
      splitter = otb::ImageRegionSquareTileSplitter<VImageDimension>::New();

    // Retrieve nb splits
    unsigned int nbSplits = splitter->GetNumberOfSplits(m_ImageRegion, m_RequestedNumberOfSplits);

    for(unsigned int i = 0; i<nbSplits; ++i)
      {
      m_StreamVector.push_back(splitter->GetSplit(i, m_RequestedNumberOfSplits, m_ImageRegion));
      }
    m_IsUpToDate = true;
    return;
    }

  // Now we can handle the case where we have a tile hint and a
  // non-trivial requested number of splits
  SizeType tilesPerDim, splitsPerDim;
  IndexType firstTileCovered;

  // First, we need to get which tiles are covered by ROI
  firstTileCovered[0] = m_ImageRegion.GetIndex()[0] / m_TileHint[0];
  firstTileCovered[1] = m_ImageRegion.GetIndex()[1] / m_TileHint[1];
  tilesPerDim[0] = (m_ImageRegion.GetIndex()[0] + m_ImageRegion.GetSize()[0] + m_TileHint[0] -1) / m_TileHint[0] - firstTileCovered[0];
  tilesPerDim[1] = (m_ImageRegion.GetIndex()[1] + m_ImageRegion.GetSize()[1] + m_TileHint[1] -1) / m_TileHint[1] - firstTileCovered[1];
  
  unsigned int totalTiles = tilesPerDim[0] * tilesPerDim[1];

  // In this case, we have to group input tiles
  if(totalTiles >= m_RequestedNumberOfSplits)
    {
    // Try to group splits
    SizeType groupTiles;
    groupTiles.Fill(1);

    unsigned int i=0;

    // TODO: this should not fall in infinite loop, but add more
    // security just in case.
    while(totalTiles / (groupTiles[0] * groupTiles[1]) > m_RequestedNumberOfSplits)
      {
      if(groupTiles[i] < tilesPerDim[i])
        {
        groupTiles[i]++;
        }
      // TODO: We can be more generic here
      i = (i+1)%2;
      }

   
    splitsPerDim[0] = tilesPerDim[0] / groupTiles[0];
    splitsPerDim[1] = tilesPerDim[1] / groupTiles[1];

    // Handle the last small tile if any
    if(tilesPerDim[0] % groupTiles[0] > 0)
      splitsPerDim[0]++;

    if(tilesPerDim[1] % groupTiles[1] > 0)
      splitsPerDim[1]++;

    // Fill the tiling scheme
    for(unsigned int splity = 0; splity < splitsPerDim[1]; ++splity)
      {
      for(unsigned int splitx = 0; splitx < splitsPerDim[0]; ++splitx)
        {
        // Build the split
        RegionType newSplit;
        SizeType newSplitSize;
        IndexType newSplitIndex;

        newSplitSize[0] = groupTiles[0] * m_TileHint[0];
        newSplitSize[1] = groupTiles[1] * m_TileHint[1];

        newSplitIndex[0] = firstTileCovered[0] * m_TileHint[0] + splitx * newSplitSize[0];
        newSplitIndex[1] = firstTileCovered[1] * m_TileHint[1] + splity * newSplitSize[1];

        newSplit.SetIndex(newSplitIndex);
        newSplit.SetSize(newSplitSize);

        bool cropped = newSplit.Crop(m_ImageRegion);
        // If newSplit could not be cropped, it means that it is
        // outside m_ImageRegion. In this case we ignore it.
        if(cropped)
          {
          m_StreamVector.push_back(newSplit);
          }
        }
      }
    }
  // In this case, we must divide each tile
  else
    {
    SizeType divideTiles;
    divideTiles.Fill(1);

    unsigned int i = 1;

    // Exit condition if divideTiles=m_TileHint (i.e. no more subdivision available)
    while(totalTiles * (divideTiles[0] * divideTiles[1]) < m_RequestedNumberOfSplits
      && (divideTiles[0] < m_TileHint[0] || divideTiles[1] < m_TileHint[1]))
      {
      if(divideTiles[i] < m_TileHint[i])
        {
        divideTiles[i]++;
        }
      // TODO: We can be more generic here
      i = (i+1)%2;
      }

    SizeType splitSize;
    splitSize[0] = (m_TileHint[0] + divideTiles[0] - 1)/ divideTiles[0];
    splitSize[1] = (m_TileHint[1] + divideTiles[1] - 1)/ divideTiles[1];

    RegionType tileHintRegion;
    tileHintRegion.SetSize(m_TileHint);
    // Fill the tiling scheme
    for(unsigned int tiley = 0; tiley < tilesPerDim[1]; ++tiley)
      {
      for(unsigned int tilex = 0; tilex < tilesPerDim[0]; ++tilex)
        {
        for(unsigned int divy = 0; divy < divideTiles[1]; ++divy)
          {
          for(unsigned int divx = 0; divx < divideTiles[0]; ++divx)
            {
            // Build the split
            RegionType newSplit;
            IndexType newSplitIndex;

            newSplitIndex[0] = (tilex + firstTileCovered[0]) * m_TileHint[0] + divx * splitSize[0];
            newSplitIndex[1] = (tiley + firstTileCovered[1]) * m_TileHint[1] + divy * splitSize[1];

            newSplit.SetIndex(newSplitIndex);
            newSplit.SetSize(splitSize);

            tileHintRegion.SetIndex(0, tilex * m_TileHint[0]);
            tileHintRegion.SetIndex(1, tiley * m_TileHint[1]);

            bool cropped = newSplit.Crop(m_ImageRegion);

            // If newSplit could not be cropped, it means that it is
            // outside m_ImageRegion. In this case we ignore it.
            if(cropped)
              {
              // check that the split stays inside its tile
              cropped = newSplit.Crop(tileHintRegion);
              if (cropped)
                {
                m_StreamVector.push_back(newSplit);
                }
              }
            }
          }
        }
      }
    }
  // Finally toggle the up-to-date flag
  m_IsUpToDate = true;
  return;
}

/**
 *
 */
template <unsigned int VImageDimension>
void
ImageRegionAdaptativeSplitter<VImageDimension>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os<<indent<<"IsUpToDate: "<<(m_IsUpToDate ? "true" : "false")<<std::endl;
  os<<indent<<"ImageRegion: "<<m_ImageRegion<<std::endl;
  os<<indent<<"Tile hint: "<<m_TileHint<<std::endl;
  os<<indent<<"Requested number of splits: "<<m_RequestedNumberOfSplits<<std::endl;
  os<<indent<<"Actual number of splits: "<<m_StreamVector.size()<<std::endl;
}

} // end namespace itk

#endif