This file is indexed.

/usr/include/OTB-5.8/otbHistogramOfOrientedGradientCovariantImageFunction.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbHistogramOfOrientedGradientCovariantImageFunction_txx
#define otbHistogramOfOrientedGradientCovariantImageFunction_txx

#include "otbHistogramOfOrientedGradientCovariantImageFunction.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNumericTraits.h"
#include "otbMath.h"

namespace otb
{

/**
 * Constructor
 */
template <class TInputImage, class TOutputPrecision, class TCoordRep>
HistogramOfOrientedGradientCovariantImageFunction<TInputImage, TOutputPrecision, TCoordRep>
::HistogramOfOrientedGradientCovariantImageFunction() : m_NeighborhoodRadius(8),
                                                        m_NumberOfOrientationBins(18)
{}

template <class TInputImage, class TOutputPrecision, class TCoordRep>
void
HistogramOfOrientedGradientCovariantImageFunction<TInputImage, TOutputPrecision, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << " Neighborhood radius value   : "  << m_NeighborhoodRadius << std::endl;
}

template <class TInputImage, class TOutputPrecision, class TCoordRep>
typename HistogramOfOrientedGradientCovariantImageFunction<TInputImage, TOutputPrecision, TCoordRep>::OutputType
HistogramOfOrientedGradientCovariantImageFunction<TInputImage, TOutputPrecision, TCoordRep>
::EvaluateAtIndex(const IndexType& index) const
{
  // Build output vector
  OutputType hog;

  // Check for input image
  if( !this->GetInputImage() )
    {
    return hog;
    }

  // Check for out of buffer
  if ( !this->IsInsideBuffer( index ) )
    {
    return hog;
    }

  // Create an N-d neighborhood kernel, using a zeroflux boundary condition
  typename InputImageType::SizeType kernelSize;
  kernelSize.Fill( m_NeighborhoodRadius );

  itk::ConstNeighborhoodIterator<InputImageType>
    it(kernelSize, this->GetInputImage(), this->GetInputImage()->GetBufferedRegion());

  // Set the iterator at the desired location
  it.SetLocation(index);

  // Offset to be used in the loops
  typename InputImageType::OffsetType offset;

  // Compute the center bin radius
  double centerBinRadius = static_cast<double>(m_NeighborhoodRadius)/2;

  // Define a gaussian kernel around the center location
  double squaredRadius = m_NeighborhoodRadius * m_NeighborhoodRadius;
  double squaredCenterBinRadius = centerBinRadius * centerBinRadius;
  double squaredSigma = 0.25 * squaredRadius;

  // Build a global orientation histogram
  std::vector<TOutputPrecision> globalOrientationHistogram(m_NumberOfOrientationBins, 0.);

  // Compute the orientation bin width
  double orientationBinWidth = otb::CONST_2PI / m_NumberOfOrientationBins;

  // Build the global orientation histogram
  for(int i = -(int)m_NeighborhoodRadius; i< (int)m_NeighborhoodRadius; ++i)
    {
    for(int j = -(int)m_NeighborhoodRadius; j< (int)m_NeighborhoodRadius; ++j)
      {
      // Check if the current pixel lies within a disc of radius m_NeighborhoodRadius
      double currentSquaredRadius = i*i+j*j;
      if(currentSquaredRadius < squaredRadius)
        {
        // If so, compute the gaussian weighting (this could be
        // computed once for all for the sake of optimisation)
        double gWeight = (1/vcl_sqrt(otb::CONST_2PI*squaredSigma)) * vcl_exp(- currentSquaredRadius/(2*squaredSigma));

        // Compute pixel location
        offset[0]=i;
        offset[1]=j;

        // Get the current gradient covariant value
        InputPixelType gradient = it.GetPixel(offset);

        // Then, compute the gradient orientation
        double angle = vcl_atan2(gradient[1], gradient[0]);

        // Also compute its magnitude
        TOutputPrecision magnitude = vcl_sqrt(gradient[0]*gradient[0]+gradient[1]*gradient[1]);

        // Determine the bin index (shift of otb::CONST_PI since atan2 values
        // lies in [-pi, pi]
        unsigned int binIndex = vcl_floor((otb::CONST_PI + angle)/orientationBinWidth);

        // Handle special case where angle = pi, and binIndex is out-of-bound
        if(binIndex == m_NumberOfOrientationBins)
          binIndex=m_NumberOfOrientationBins-1;

         // Cumulate values
        globalOrientationHistogram[binIndex]+= magnitude * gWeight;
        }
      }
    }

  // Compute principal orientation
  // TODO: Replace this with a stl algorithm
  double maxOrientationHistogramValue = globalOrientationHistogram[0];
  unsigned int maxOrientationHistogramBin = 0;

  for(unsigned int i = 1; i < m_NumberOfOrientationBins; ++i)
    {
    // Retrieve current value
    double currentValue = globalOrientationHistogram[i];

    // Look for new maximum
    if(maxOrientationHistogramValue<currentValue)
      {
      maxOrientationHistogramValue = currentValue;
      maxOrientationHistogramBin = i;
      }
    }

  // Derive principal orientation
  double principalOrientation = maxOrientationHistogramBin * orientationBinWidth - otb::CONST_PI;

  // Initialize the five spatial bins
  std::vector<TOutputPrecision> centerHistogram(m_NumberOfOrientationBins, 0.);
  std::vector<TOutputPrecision> upperLeftHistogram(m_NumberOfOrientationBins, 0.);
  std::vector<TOutputPrecision> upperRightHistogram(m_NumberOfOrientationBins, 0.);
  std::vector<TOutputPrecision> lowerLeftHistogram(m_NumberOfOrientationBins, 0.);
  std::vector<TOutputPrecision> lowerRightHistogram(m_NumberOfOrientationBins, 0.);

  // Walk the image once more to fill the spatial bins
  for(int i = -(int)m_NeighborhoodRadius; i< (int)m_NeighborhoodRadius; ++i)
    {
    for(int j = -(int)m_NeighborhoodRadius; j< (int)m_NeighborhoodRadius; ++j)
      {
      // Check if the current pixel lies within a disc of radius m_NeighborhoodRadius
      double currentSquaredRadius = i*i+j*j;
      if(currentSquaredRadius < squaredRadius)
        {
        // If so, compute the gaussian weighting (this could be
        // computed once for all for the sake of optimisation)
        double gWeight = (1/vcl_sqrt(otb::CONST_2PI * squaredSigma)) * vcl_exp(- currentSquaredRadius/(2*squaredSigma));

        // Compute pixel location
        offset[0]=i;
        offset[1]=j;

        // Get the current gradient covariant value
        InputPixelType gradient = it.GetPixel(offset);

        // Then, compute the compensated gradient orientation
        double angle = vcl_atan2(gradient[1], gradient[0]) - principalOrientation;

        // Angle is supposed to lie with [-pi, pi], so we ensure that
        // compenstation did not introduce out-of-range values
        if(angle > otb::CONST_PI)
          {
          angle -= otb::CONST_2PI;
          }
        else if(angle < -otb::CONST_PI)
          {
          angle += otb::CONST_2PI;
          }

        // Also compute its magnitude
        TOutputPrecision magnitude = vcl_sqrt(gradient[0]*gradient[0]+gradient[1]*gradient[1]);

        // Determine the bin index (shift of otb::CONST_PI since atan2 values
        // lies in [-pi, pi]
        unsigned int binIndex = vcl_floor((otb::CONST_PI + angle)/orientationBinWidth);

        if(binIndex == m_NumberOfOrientationBins)
          binIndex=m_NumberOfOrientationBins-1;

        // Compute the angular position
        double angularPosition = vcl_atan2((double)j, (double)i) - principalOrientation;

        // Angle is supposed to lie within [-pi, pi], so we ensure that
        // the compensation did not introduce out-of-range values
        if(angularPosition > otb::CONST_PI)
          {
          angularPosition -= otb::CONST_2PI;
          }
        else if(angularPosition < -otb::CONST_PI)
          {
          angularPosition += otb::CONST_2PI;
          }

        // Check if we lie in center bin
        if(currentSquaredRadius < squaredCenterBinRadius)
          {
          centerHistogram[binIndex]+= magnitude * gWeight;
          }
        else if(angularPosition > 0)
          {
          if(angularPosition < otb::CONST_PI_2)
            {
            upperRightHistogram[binIndex]+= magnitude * gWeight;
            }
          else
            {
            upperLeftHistogram[binIndex]+= magnitude * gWeight;
            }
          }
        else
          {
          if(angularPosition > -otb::CONST_PI_2)
            {
            lowerRightHistogram[binIndex]+= magnitude * gWeight;
            }
          else
            {
            lowerLeftHistogram[binIndex]+= magnitude * gWeight;
            }
          }

        // Cumulate values
        globalOrientationHistogram[binIndex]+= magnitude * gWeight;
        }
      }
    }

  // Build the final output
  hog.push_back(centerHistogram);
  hog.push_back(upperLeftHistogram);
  hog.push_back(upperRightHistogram);
  hog.push_back(lowerRightHistogram);
  hog.push_back(lowerLeftHistogram);

  // Normalize each histogram
  for(typename OutputType::iterator oIt = hog.begin(); oIt!=hog.end(); ++oIt)
    {
    // Compute L2 norm
    double squaredCumul = 1e-10;
    for(typename std::vector<TOutputPrecision>::const_iterator vIt = oIt->begin();
        vIt!=oIt->end(); ++vIt)
      {
      squaredCumul += (*vIt)*(*vIt);
      }
    double scale = 1/vcl_sqrt(squaredCumul);
    // Apply normalisation factor
    for(typename std::vector<TOutputPrecision>::iterator vIt = oIt->begin();
        vIt!=oIt->end(); ++vIt)
      {
      (*vIt)*=scale;
      }
    }


  // Return result
  return hog;
}

} // namespace otb

#endif