/usr/include/OTB-5.8/otbHistogramOfOrientedGradientCovariantImageFunction.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbHistogramOfOrientedGradientCovariantImageFunction_h
#define otbHistogramOfOrientedGradientCovariantImageFunction_h
#include "itkImageFunction.h"
#include "itkFixedArray.h"
namespace otb
{
/**
* \class HistogramOfOrientedGradientCovariantImageFunction
* \brief Calculate the centered HOG features
*
* This filter implements the centered histogram of gradient
* feature. It expects a gradient covariant image as input, such as
* the output of the itk::GradientImageFilter. Steps of the algorithm
* are as follows.
*
* In order to make the C-HOG descriptor rotation-invariant, a
* principal gradient orientation is first looked for. Within the
* m_NeighborhoodRadius ($r$), an histogram of the local orientation is
* computed with m_NumberOfOrientationBins bins. Values cumulated in
* this histogram are the gradient magnitude weighted by a gaussian
* kernel of $\sigma = 0.5 * r$.
*
* From this orientation histogram, the principal orientation is
* computed by looking for the maximum valued bin.
*
* Once principal orientation is computed,
* gradient magnitude values weighted by the gaussian kernel are
* cumulated in five different histograms corresponding to five
* distinct spatial areas : the center area (radius of the center area
* is computed using $r_{c}=log_{2}(r)$), and the upper-left,
* upper-right, lower-left and lower-right radial areas. Orientation
* of these radial areas is shifted to match the principal
* orientation, and gradient orientations to determine histogram bins
* are also compensated with the principal orientation. Last, each
* histogram is normalized by its $L_2$ norm, ensuring that they
* all lie in the range $[0, 1]$.
*
* This class is templated over the input image type, the output
* precision (e.g. float ou double) and the
* coordinate representation type (e.g. float or double).
* \ingroup ImageFunctions
*
* \ingroup OTBDescriptors
*/
template <class TInputImage, class TOutputPrecision = double, class TCoordRep = double >
class ITK_EXPORT HistogramOfOrientedGradientCovariantImageFunction :
public itk::ImageFunction< TInputImage, std::vector< std::vector<
TOutputPrecision > >, TCoordRep >
{
public:
/** Standard class typedefs. */
typedef HistogramOfOrientedGradientCovariantImageFunction Self;
typedef itk::ImageFunction< TInputImage, std::vector<std::vector
<TOutputPrecision> >, TCoordRep > Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(HistogramOfOrientedGradientCovariantImageFunction, ImageFunction);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** InputImageType typedef support. */
typedef TInputImage InputImageType;
typedef typename InputImageType::PixelType InputPixelType;
typedef typename Superclass::IndexType IndexType;
typedef typename Superclass::ContinuousIndexType ContinuousIndexType;
typedef typename Superclass::PointType PointType;
typedef TOutputPrecision OutputPrecisionType;
typedef typename Superclass::OutputType OutputType;
typedef TCoordRep CoordRepType;
/** Dimension of the underlying image. */
itkStaticConstMacro(ImageDimension, unsigned int,
InputImageType::ImageDimension);
/** Evalulate the function at specified index */
OutputType EvaluateAtIndex(const IndexType& index) const ITK_OVERRIDE;
/** Evaluate the function at non-integer positions */
OutputType Evaluate(const PointType& point) const ITK_OVERRIDE
{
IndexType index;
this->ConvertPointToNearestIndex(point, index);
return this->EvaluateAtIndex(index);
}
OutputType EvaluateAtContinuousIndex(
const ContinuousIndexType& cindex) const ITK_OVERRIDE
{
IndexType index;
this->ConvertContinuousIndexToNearestIndex(cindex, index);
return this->EvaluateAtIndex(index);
}
/** Get/Set the radius of the neighborhood over which the
* statistics are evaluated
*/
itkSetMacro( NeighborhoodRadius, unsigned int );
itkGetConstReferenceMacro( NeighborhoodRadius, unsigned int );
/** Get/Set the number of bins of the orientation histograms
*/
itkSetMacro( NumberOfOrientationBins, unsigned int );
itkGetConstReferenceMacro( NumberOfOrientationBins, unsigned int );
protected:
HistogramOfOrientedGradientCovariantImageFunction();
~HistogramOfOrientedGradientCovariantImageFunction() ITK_OVERRIDE {}
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
private:
HistogramOfOrientedGradientCovariantImageFunction(const Self &); //purposely not implemented
void operator =(const Self&); //purposely not implemented
// Radius over which the principal orientation will be computed
unsigned int m_NeighborhoodRadius;
// Number of bins in the orientation
unsigned int m_NumberOfOrientationBins;
};
} // namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbHistogramOfOrientedGradientCovariantImageFunction.txx"
#endif
#endif
|