/usr/include/OTB-5.8/otbHaralickTexturesImageFunction.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbHaralickTexturesImageFunction_txx
#define otbHaralickTexturesImageFunction_txx
#include "otbHaralickTexturesImageFunction.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNumericTraits.h"
#include <complex>
#include <cmath>
namespace otb
{
/**
* Constructor
*/
template <class TInputImage, class TCoordRep>
HaralickTexturesImageFunction<TInputImage, TCoordRep>
::HaralickTexturesImageFunction() :
m_NeighborhoodRadius(10),
m_Offset(),
m_NumberOfBinsPerAxis(8),
m_InputImageMinimum(0),
m_InputImageMaximum(255)
{}
template <class TInputImage, class TCoordRep>
void
HaralickTexturesImageFunction<TInputImage, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << " Neighborhood radius value : " << m_NeighborhoodRadius << std::endl;
os << indent << " Input image minimum value : " << m_InputImageMinimum << std::endl;
os << indent << " Input Image maximum value : " << m_InputImageMaximum << std::endl;
os << indent << " Number of bins per axis : " << m_NumberOfBinsPerAxis << std::endl;
os << indent << " Offset : " << m_Offset << std::endl;
}
template <class TInputImage, class TCoordRep>
typename HaralickTexturesImageFunction<TInputImage, TCoordRep>::OutputType
HaralickTexturesImageFunction<TInputImage, TCoordRep>
::EvaluateAtIndex(const IndexType& index) const
{
// Build textures vector
OutputType textures;
// Initialize textures
textures.Fill( itk::NumericTraits< ScalarRealType >::Zero );
// Check for input image
if( !this->GetInputImage() )
{
return textures;
}
// Check for out of buffer
if ( !this->IsInsideBuffer( index ) )
{
return textures;
}
const double log2 = vcl_log(2.0);
// Retrieve the input pointer
InputImagePointerType inputPtr = const_cast<InputImageType *> (this->GetInputImage());
// Compute the region on which co-occurence will be estimated
typename InputRegionType::IndexType inputIndex;
typename InputRegionType::SizeType inputSize;
for (unsigned int dim = 0; dim < InputImageType::ImageDimension; ++dim)
{
inputIndex[dim] = index[dim] - m_NeighborhoodRadius;
inputSize[dim] = 2 * m_NeighborhoodRadius + 1;
}
// Build the input region
InputRegionType inputRegion;
inputRegion.SetIndex(inputIndex);
inputRegion.SetSize(inputSize);
inputRegion.Crop(inputPtr->GetRequestedRegion());
CooccurrenceIndexedListPointerType GLCIList = CooccurrenceIndexedListType::New();
GLCIList->Initialize(m_NumberOfBinsPerAxis, m_InputImageMinimum, m_InputImageMaximum);
// Next, find the minimum radius that encloses all the offsets.
unsigned int minRadius = 0;
for ( unsigned int i = 0; i < m_Offset.GetOffsetDimension(); i++ )
{
unsigned int distance = vcl_abs(m_Offset[i]);
if ( distance > minRadius )
{
minRadius = distance;
}
}
SizeType radius;
radius.Fill(minRadius);
typedef itk::ConstNeighborhoodIterator< InputImageType > NeighborhoodIteratorType;
NeighborhoodIteratorType neighborIt;
neighborIt = NeighborhoodIteratorType(radius, inputPtr, inputRegion);
for ( neighborIt.GoToBegin(); !neighborIt.IsAtEnd(); ++neighborIt )
{
const InputPixelType centerPixelIntensity = neighborIt.GetCenterPixel();
bool pixelInBounds;
const InputPixelType pixelIntensity = neighborIt.GetPixel(m_Offset, pixelInBounds);
if ( !pixelInBounds )
{
continue; // don't put a pixel in the value if it's out-of-bounds.
}
GLCIList->AddPixelPair(centerPixelIntensity, pixelIntensity);
}
double pixelMean = 0.;
double marginalMean;
double marginalDevSquared = 0.;
double pixelVariance = 0.;
//Create and Initialize marginalSums
std::vector<double> marginalSums(m_NumberOfBinsPerAxis, 0);
//get co-occurrence vector and totalfrequency
VectorType glcVector = GLCIList->GetVector();
double totalFrequency = static_cast<double> (GLCIList->GetTotalFrequency());
//Normalize the co-occurrence indexed list and compute mean, marginalSum
typename VectorType::iterator it = glcVector.begin();
while( it != glcVector.end())
{
double frequency = (*it).second / totalFrequency;
CooccurrenceIndexType index2 = (*it).first;
pixelMean += index2[0] * frequency;
marginalSums[index2[0]] += frequency;
++it;
}
/* Now get the mean and deviaton of the marginal sums.
Compute incremental mean and SD, a la Knuth, "The Art of Computer
Programming, Volume 2: Seminumerical Algorithms", section 4.2.2.
Compute mean and standard deviation using the recurrence relation:
M(1) = x(1), M(k) = M(k-1) + (x(k) - M(k-1) ) / k
S(1) = 0, S(k) = S(k-1) + (x(k) - M(k-1)) * (x(k) - M(k))
for 2 <= k <= n, then
sigma = vcl_sqrt(S(n) / n) (or divide by n-1 for sample SD instead of
population SD).
*/
std::vector<double>::const_iterator msIt = marginalSums.begin();
marginalMean = *msIt;
//Increment iterator to start with index 1
++msIt;
for(int k= 2; msIt != marginalSums.end(); ++k, ++msIt)
{
double M_k_minus_1 = marginalMean;
double S_k_minus_1 = marginalDevSquared;
double x_k = *msIt;
double M_k = M_k_minus_1 + ( x_k - M_k_minus_1 ) / k;
double S_k = S_k_minus_1 + ( x_k - M_k_minus_1 ) * ( x_k - M_k );
marginalMean = M_k;
marginalDevSquared = S_k;
}
marginalDevSquared = marginalDevSquared / m_NumberOfBinsPerAxis;
VectorConstIteratorType constVectorIt;
constVectorIt = glcVector.begin();
while( constVectorIt != glcVector.end())
{
RelativeFrequencyType frequency = (*constVectorIt).second / totalFrequency;
CooccurrenceIndexType index2 = (*constVectorIt).first;
pixelVariance += ( index2[0] - pixelMean ) * ( index2[0] - pixelMean ) * frequency;
++constVectorIt;
}
double pixelVarianceSquared = pixelVariance * pixelVariance;
// Variance is only used in correlation. If variance is 0, then (index[0] - pixelMean) * (index[1] - pixelMean)
// should be zero as well. In this case, set the variance to 1. in order to
// avoid NaN correlation.
if(pixelVarianceSquared < GetPixelValueTolerance())
{
pixelVarianceSquared = 1.;
}
//Compute textures
constVectorIt = glcVector.begin();
while( constVectorIt != glcVector.end())
{
CooccurrenceIndexType index2 = (*constVectorIt).first;
RelativeFrequencyType frequency = (*constVectorIt).second / totalFrequency;
textures[0] += frequency * frequency;
textures[1] -= ( frequency > GetPixelValueTolerance() ) ? frequency *vcl_log(frequency) / log2:0;
textures[2] += ( ( index2[0] - pixelMean ) * ( index2[1] - pixelMean ) * frequency ) / pixelVarianceSquared;
textures[3] += frequency / ( 1.0 + ( index2[0] - index2[1] ) * ( index2[0] - index2[1] ) );
textures[4] += ( index2[0] - index2[1] ) * ( index2[0] - index2[1] ) * frequency;
textures[5] += vcl_pow( ( index2[0] - pixelMean ) + ( index2[1] - pixelMean ), 3 ) * frequency;
textures[6] += vcl_pow( ( index2[0] - pixelMean ) + ( index2[1] - pixelMean ), 4 ) * frequency;
textures[7] += index2[0] * index2[1] * frequency;
++constVectorIt;
}
textures[7] = (fabs(marginalDevSquared) > 1E-8) ? ( textures[7] - marginalMean * marginalMean ) / marginalDevSquared : 0;
// Return result
return textures;
}
} // namespace otb
#endif
|