This file is indexed.

/usr/include/OTB-5.8/otbGradientBoostedTreeMachineLearningModel.h is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbGradientBoostedTreeMachineLearningModel_h
#define otbGradientBoostedTreeMachineLearningModel_h

#include "otbRequiresOpenCVCheck.h"

#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"


class CvGBTrees;

namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT GradientBoostedTreeMachineLearningModel
  : public MachineLearningModel <TInputValue, TTargetValue>
{
public:
  /** Standard class typedefs. */
  typedef GradientBoostedTreeMachineLearningModel           Self;
  typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
  typedef itk::SmartPointer<Self>                         Pointer;
  typedef itk::SmartPointer<const Self>                   ConstPointer;

  typedef typename Superclass::InputValueType             InputValueType;
  typedef typename Superclass::InputSampleType            InputSampleType;
  typedef typename Superclass::InputListSampleType        InputListSampleType;
  typedef typename Superclass::TargetValueType            TargetValueType;
  typedef typename Superclass::TargetSampleType           TargetSampleType;
  typedef typename Superclass::TargetListSampleType       TargetListSampleType;
  typedef typename Superclass::ConfidenceValueType        ConfidenceValueType;

  /** Run-time type information (and related methods). */
  itkNewMacro(Self);
  itkTypeMacro(GradientBoostedTreeMachineLearningModel, MachineLearningModel);

  /** Type of the loss function used for training.
   * It must be one of the following types: CvGBTrees::SQUARED_LOSS, CvGBTrees::ABSOLUTE_LOSS,
   * CvGBTrees::HUBER_LOSS, CvGBTrees::DEVIANCE_LOSS.
   * The first three types are used for regression problems, and the last one for classification.
   * Default is CvGBTrees::DEVIANCE_LOSS
   * \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
   */
  itkGetMacro(LossFunctionType, int);
  itkSetMacro(LossFunctionType, int);

  /** Count of boosting algorithm iterations. weak_count*K is the total count of trees in the GBT model,
   * where K is the output classes count (equal to one in case of a regression).
   * Default is 200
   * \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
   */
  itkGetMacro(WeakCount, int);
  itkSetMacro(WeakCount, int);

  /** Regularization parameter.
   * Default is 0.8
   * \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
   */
  itkGetMacro(Shrinkage, double);
  itkSetMacro(Shrinkage, double);

  /** Portion of the whole training set used for each algorithm iteration. Subset is generated randomly.
   *  For more information see http://www.salfordsystems.com/doc/StochasticBoostingSS.pdf.
   *  Default is 0.01
   * \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
   */
  itkGetMacro(SubSamplePortion, double);
  itkSetMacro(SubSamplePortion, double);

  /** Maximum depth of each decision tree.
   * Default is 3
   * \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
   */
  itkGetMacro(MaxDepth, int);
  itkSetMacro(MaxDepth, int);

  /** If true then surrogate splits will be built.
   * These splits allow working with missing data and compute variable importance correctly.
   * Default is false
   * \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
   */
  itkGetMacro(UseSurrogates, bool);
  itkSetMacro(UseSurrogates, bool);

  /** Train the machine learning model */
  void Train() ITK_OVERRIDE;

  /** Save the model to file */
  void Save(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /** Load the model from file */
  void Load(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /**\name Classification model file compatibility tests */
  //@{
  /** Is the input model file readable and compatible with the corresponding classifier ? */
  bool CanReadFile(const std::string &) ITK_OVERRIDE;

  /** Is the input model file writable and compatible with the corresponding classifier ? */
  bool CanWriteFile(const std::string &) ITK_OVERRIDE;
  //@}

protected:
  /** Constructor */
  GradientBoostedTreeMachineLearningModel();

  /** Destructor */
  ~GradientBoostedTreeMachineLearningModel() ITK_OVERRIDE;

    /** Predict values using the model */
  TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType *quality=ITK_NULLPTR) const ITK_OVERRIDE;

  
  /** PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;

private:
  GradientBoostedTreeMachineLearningModel(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

  CvGBTrees * m_GBTreeModel;

  int m_LossFunctionType;
  int m_WeakCount;
  double m_Shrinkage;
  double m_SubSamplePortion;
  int m_MaxDepth;
  bool m_UseSurrogates;


};
} // end namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbGradientBoostedTreeMachineLearningModel.txx"
#endif

#endif