/usr/include/OTB-5.8/otbGradientBoostedTreeMachineLearningModel.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbGradientBoostedTreeMachineLearningModel_h
#define otbGradientBoostedTreeMachineLearningModel_h
#include "otbRequiresOpenCVCheck.h"
#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"
class CvGBTrees;
namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT GradientBoostedTreeMachineLearningModel
: public MachineLearningModel <TInputValue, TTargetValue>
{
public:
/** Standard class typedefs. */
typedef GradientBoostedTreeMachineLearningModel Self;
typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef typename Superclass::InputValueType InputValueType;
typedef typename Superclass::InputSampleType InputSampleType;
typedef typename Superclass::InputListSampleType InputListSampleType;
typedef typename Superclass::TargetValueType TargetValueType;
typedef typename Superclass::TargetSampleType TargetSampleType;
typedef typename Superclass::TargetListSampleType TargetListSampleType;
typedef typename Superclass::ConfidenceValueType ConfidenceValueType;
/** Run-time type information (and related methods). */
itkNewMacro(Self);
itkTypeMacro(GradientBoostedTreeMachineLearningModel, MachineLearningModel);
/** Type of the loss function used for training.
* It must be one of the following types: CvGBTrees::SQUARED_LOSS, CvGBTrees::ABSOLUTE_LOSS,
* CvGBTrees::HUBER_LOSS, CvGBTrees::DEVIANCE_LOSS.
* The first three types are used for regression problems, and the last one for classification.
* Default is CvGBTrees::DEVIANCE_LOSS
* \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
*/
itkGetMacro(LossFunctionType, int);
itkSetMacro(LossFunctionType, int);
/** Count of boosting algorithm iterations. weak_count*K is the total count of trees in the GBT model,
* where K is the output classes count (equal to one in case of a regression).
* Default is 200
* \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
*/
itkGetMacro(WeakCount, int);
itkSetMacro(WeakCount, int);
/** Regularization parameter.
* Default is 0.8
* \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
*/
itkGetMacro(Shrinkage, double);
itkSetMacro(Shrinkage, double);
/** Portion of the whole training set used for each algorithm iteration. Subset is generated randomly.
* For more information see http://www.salfordsystems.com/doc/StochasticBoostingSS.pdf.
* Default is 0.01
* \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
*/
itkGetMacro(SubSamplePortion, double);
itkSetMacro(SubSamplePortion, double);
/** Maximum depth of each decision tree.
* Default is 3
* \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
*/
itkGetMacro(MaxDepth, int);
itkSetMacro(MaxDepth, int);
/** If true then surrogate splits will be built.
* These splits allow working with missing data and compute variable importance correctly.
* Default is false
* \see http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtreesparams-cvgbtreesparams
*/
itkGetMacro(UseSurrogates, bool);
itkSetMacro(UseSurrogates, bool);
/** Train the machine learning model */
void Train() ITK_OVERRIDE;
/** Save the model to file */
void Save(const std::string & filename, const std::string & name="") ITK_OVERRIDE;
/** Load the model from file */
void Load(const std::string & filename, const std::string & name="") ITK_OVERRIDE;
/**\name Classification model file compatibility tests */
//@{
/** Is the input model file readable and compatible with the corresponding classifier ? */
bool CanReadFile(const std::string &) ITK_OVERRIDE;
/** Is the input model file writable and compatible with the corresponding classifier ? */
bool CanWriteFile(const std::string &) ITK_OVERRIDE;
//@}
protected:
/** Constructor */
GradientBoostedTreeMachineLearningModel();
/** Destructor */
~GradientBoostedTreeMachineLearningModel() ITK_OVERRIDE;
/** Predict values using the model */
TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType *quality=ITK_NULLPTR) const ITK_OVERRIDE;
/** PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
private:
GradientBoostedTreeMachineLearningModel(const Self &); //purposely not implemented
void operator =(const Self&); //purposely not implemented
CvGBTrees * m_GBTreeModel;
int m_LossFunctionType;
int m_WeakCount;
double m_Shrinkage;
double m_SubSamplePortion;
int m_MaxDepth;
bool m_UseSurrogates;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbGradientBoostedTreeMachineLearningModel.txx"
#endif
#endif
|