/usr/include/OTB-5.8/otbGlView.h is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otb_GlView_h
#define otb_GlView_h
#include "otbGeoInterface.h"
#include "otbGlActor.h"
#include "otbViewSettings.h"
#include <map>
#include <vector>
#include <cassert>
namespace otb
{
template< typename T >
void
assert_quiet_NaN( T val )
{
assert( !std::numeric_limits< T >::has_quiet_NaN ||
( std::numeric_limits< T >::has_quiet_NaN &&
val!=std::numeric_limits< T >::quiet_NaN() ) );
// make production build happy
((void)val);
}
template< typename T >
void
assert_signaling_NaN( T val )
{
assert( !std::numeric_limits< T >::has_signaling_NaN ||
( std::numeric_limits< T >::has_signaling_NaN &&
val!=std::numeric_limits< T >::signaling_NaN() ) );
// make production build happy
((void)val);
}
template< typename T >
void
assert_NaN( T val )
{
assert_quiet_NaN( val );
assert_signaling_NaN( val );
// make production build happy
((void)val);
}
/**
* The GlView class acts like an OpenGl scene where actors deriving
* from the GlActor class can be rendered. The GlView class contains the
* OpenGl viewport and manages:
* - The size of the viewport,
* - The entire refresh loop, including light or heavy rendering of
* all actors and all OpenGl specific stuff needed before and after
* the actors update,
* - The actors stack (order in which actors are rendered).
*
* All parameters related to scene description (origin, spacing, angle
* ...) are stored and managed by the ViewSettings class.
*/
class OTBIce_EXPORT GlView
: public itk::Object
{
public:
typedef GlView Self;
typedef itk::Object Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef otb::GlActor ActorType;
typedef std::map<std::string,ActorType::Pointer> ActorMapType;
typedef std::vector<std::string> StringVectorType;
/**
* Type definition for otb::GlActor storage key.
*/
typedef StringVectorType::value_type KeyType;
itkNewMacro(Self);
/**
* The Initialize method will reset the OpenGl viewport to the given
* size, clear view settings and remove any existing actor.
* \param sx Width of the viewport
* \param sy Height of the viewport
*/
void Initialize(unsigned int sx, unsigned int sy);
/**
* This method allows adding a new actor (deriving from GlActor) to
* the GlView. The actor can be identified by an optional key. If
* not provided, and the default value is used, the method will
* generate a key to identify the actor. In both case, the key is
* returned by the method.
* \param actor The actor to be added
* \param key The key to be used to identify the actor (default to
* empty string)
* \return The key identifying the actor (either passed to the
* method or generated by it).
*/
std::string AddActor(ActorType * actor, const std::string & key = "");
/**
* This method will try to remove the actor identified by the given
* key.
* \param key The key identifying the actor to remove
* \return True if the actor has been found and removed, false
* otherwise
*/
bool RemoveActor(const std::string & key);
/**
* This method will remove all existing actors at once.
*/
void ClearActors();
/**
* This method allows retrieving a pointer to the actor identified
* by the given key.
* \param key The key identifying the actor to retrieve
* \return A pointer to the retrieved actor. This pointer will be
* null if no actor could be found with this key.
*/
ActorType::Pointer GetActor(const std::string & key) const;
/**
* Tells whether an otb::GlActor is contained given its storage key.
*
* @param key otb::GlActor storage key.
*
* @return true if an otb::GlActor is contained given storage key.
*/
bool ContainsActor( const KeyType & key ) const;
/**
* This method will return a vector containing the keys of all
* actors.
* \return A vector of string containing the keys of all actors.
*/
std::vector<std::string> GetActorsKeys() const;
/**
* This method handles all the things that should be done before
* rendering.
*/
void BeforeRendering();
/**
* This method handles all the things that should be after before
* rendering.
*/
void AfterRendering();
/**
* This method will update the rendering of the OpenGl viewport,
* taking into account all parameters in the ViewSettings, without
* fetching any missing data from disk or RAM. It is therefore very
* fast.
*/
void LightRender();
/**
* This method will update the rendering of the OpenGl viewport,
* taking into account all parameters in the ViewSettings, but will
* first compute and load any missing data for a complete
* rendering. As such, this update routine can be time consuming.
*/
void HeavyRender();
// Resize viewport
void Resize(unsigned int sx, unsigned int sy);
itkSetObjectMacro(Settings,ViewSettings);
itkGetObjectMacro(Settings,ViewSettings);
itkGetConstObjectMacro(Settings,ViewSettings);
//comment this macro (not compiling with OTB 3.X)
// Get Rendering order
const StringVectorType & GetRenderingOrder() const
{
return m_RenderingOrder;
};
/**
* Arbitrary set the rendering order of some or all of contained
* otb::GlActor instances.
*
* Keys which are not contained will be ignored.
*
* @param keys The ordered sequence of keys.
* @param front <code>true</code> to order selected otb::GlActor
* instances in front of non-selected ones.
*/
void SetRenderingOrder( const StringVectorType & keys,
bool front );
// This will rotate the rendering order (without modifying the order)
void RotateRenderingOrder(bool down = false);
// Move actor in rendering order
void MoveActorInRenderingOrder(std::string key, bool down = false);
// Move actor to the end of rendering order (either front if front
// is set to true or back if front is set to false)
void MoveActorToEndOfRenderingOrder(std::string key, bool front = false);
/**
* Reproject point and spacing expressed in viewport coordinate
* system into given actor coordinate system.
*/
template< typename P, typename S, typename P2, typename S2 >
bool ReprojectFromView( P & center,
S & spacing,
const KeyType & key,
const P2 & vcenter,
const S2 & vspacing,
double norm = 1000.0 ) const;
/**
*/
template< typename P >
size_t GetExtent( P & origin, P & extent, bool isOverlay =false ) const;
/**
*/
template< typename Point, typename Spacing >
bool ZoomToExtent( const Spacing & native,
Point & center,
Spacing & spacing ) const;
/**
*/
template< typename Point, typename Spacing >
bool ZoomToLayer( const KeyType & key,
const Spacing & native,
Point & center,
Spacing & spacing ) const;
/**
*/
template< typename Point, typename Spacing >
bool ZoomToRegion( const Point & origin,
const Point & extent,
const Spacing & native,
Point & center,
Spacing & spacing ) const;
/**
*/
template< typename Point, typename Spacing >
bool ZoomToFull( const KeyType & key,
Point & center,
Spacing & spacing,
double units = 1000.0 ) const;
/**
*/
void SaveScreenshot( const std::string & filename ) const;
protected:
GlView();
~GlView() ITK_OVERRIDE;
private:
// prevent implementation
GlView(const Self&);
void operator=(const Self&);
ViewSettings::Pointer m_Settings;
ActorMapType m_Actors;
StringVectorType m_RenderingOrder;
}; // End class GlView
template< typename P, typename S, typename P2, typename S2 >
bool
GlView
::ReprojectFromView( P & center,
S & spacing,
const KeyType & key,
const P2 & vcenter,
const S2 & vspacing,
double norm ) const
{
// std::cout << "otb::GlView@" << std::hex << this << std::endl << "{" << std::endl;
assert_NaN( vcenter[ 0 ] );
assert_NaN( vcenter[ 1 ] );
assert_NaN( vspacing[ 0 ] );
assert_NaN( vspacing[ 1 ] );
//
// Reference actor has not been found.
otb::GlActor::Pointer actor( GetActor( key ) );
if( actor.IsNull() )
return false;
//
// Reference actor does not implement geo-interface.
const otb::GeoInterface * geo =
dynamic_cast< const GeoInterface * >( actor.GetPointer() );
if( geo==ITK_NULLPTR )
return false;
//
// Compute transform origin.
if( !geo->TransformFromViewport( center, vcenter, true ) )
return false;
//
// Compute transformed X-axis extremity.
GeoInterface::Point2d x( vcenter );
x[ 0 ] += norm * vspacing[ 0 ];
// std::cout << "X {" << std::endl;
if( !geo->TransformFromViewport( x, x, true ) )
return false;
// std::cout << "x: " << x[ 0 ] << ", " << x[ 1 ] << std::endl;
// assert_NaN( x[ 0 ] );
// assert_NaN( x[ 1 ] );
// std::cout << "}" << std::endl;
//
// Compute transformed Y-axis extremity.
GeoInterface::Point2d y( vcenter );
y[ 1 ] += norm * vspacing[ 1 ];
// std::cout << "Y {" << std::endl;
if( !geo->TransformFromViewport( y, y, true ) )
return false;
// std::cout << "y: " << y[ 0 ] << ", " << y[ 1 ] << std::endl;
// assert_NaN( y[ 0 ] );
// assert_NaN( y[ 1 ] );
// std::cout << "}" << std::endl;
//
// Compute transformed spacing.
//
// Note SAT:
// Formula has been taken from IceViewer::key_callback(). I think
// that the norm of the transformed X and Y axises is not
// the new spacing if transform contains a rotation.
// To correct this, transformed X and Y vectors should be
// projected against reference actor X and Y axises (using vectorial
// dot product).
x[ 0 ] -= center[ 0 ];
x[ 1 ] -= center[ 1 ];
y[ 0 ] -= center[ 0 ];
y[ 1 ] -= center[ 1 ];
spacing[ 0 ] = vcl_sqrt( x[ 0 ] * x[ 0 ] + x[ 1 ] * x[ 1 ] ) / norm;
spacing[ 1 ] = vcl_sqrt( y[ 0 ] * y[ 0 ] + y[ 1 ] * y[ 1 ] ) / norm;
// Sign of x-spacing is done by sign( x . (1, 0) ) which is sign( x[ 0 ] )
// Sign of y-spacing is done by sign( y . (0, 1) ) which is sign[ y[ 1 ] )
if( x[ 0 ]<0.0 )
spacing[ 0 ] = -spacing[ 0 ];
if( y[ 1 ]<0.0 )
spacing[ 1 ] = -spacing[ 1 ];
//
// Chech outputs.
assert_NaN( center[ 0 ] );
assert_NaN( center[ 1 ] );
assert_NaN( spacing[ 0 ] );
assert_NaN( spacing[ 1 ] );
// std::cout << "} otb::GlView@" << std::hex << this << std::endl;
//
// Ok.
return true;
}
template< typename P >
size_t
GlView
::GetExtent( P & origin, P & extent, bool isOverlay ) const
{
if( m_Actors.empty() )
{
origin.Fill( 0 );
extent.Fill( 0 );
return 0;
}
origin[ 0 ] = std::numeric_limits< typename P::ValueType >::infinity();
origin[ 1 ] = std::numeric_limits< typename P::ValueType >::infinity();
extent[ 0 ] = -std::numeric_limits< typename P::ValueType >::infinity();
extent[ 1 ] = -std::numeric_limits< typename P::ValueType >::infinity();
size_t count = 0;
for( ActorMapType::const_iterator it( m_Actors.begin() );
it!=m_Actors.end();
++it )
{
assert( !it->second.IsNull() );
if( it->second->GetOverlay()==isOverlay )
{
P o;
P e;
o.Fill( 0 );
e.Fill( 0 );
it->second->GetExtent( o[ 0 ], o[ 1 ], e[ 0 ], e[ 1 ] );
if( o[ 0 ]<origin[ 0 ] )
origin[ 0 ] = o[ 0 ];
if( o[ 1 ]<origin[ 1 ] )
origin[ 1 ] = o[ 1 ];
if( o[ 0 ]>extent[ 0 ] )
extent[ 0 ] = o[ 0 ];
if( o[ 1 ]>extent[ 1 ] )
extent[ 1 ] = o[ 1 ];
if( e[ 0 ]<origin[ 0 ] )
origin[ 0 ] = e[ 0 ];
if( e[ 1 ]<origin[ 1 ] )
origin[ 1 ] = e[ 1 ];
if( e[ 0 ]>extent[ 0 ] )
extent[ 0 ] = e[ 0 ];
if( e[ 1 ]>extent[ 1 ] )
extent[ 1 ] = e[ 1 ];
++ count;
}
}
if( count==0 )
{
origin.Fill( 0 );
extent.Fill( 0 );
}
return count;
}
template< typename Point, typename Spacing >
bool
GlView
::ZoomToExtent( const Spacing & native, Point & center, Spacing & spacing ) const
{
Point o;
Point e;
o.Fill( 0 );
e.Fill( 0 );
// Get origin and extent of all layers in viewport system.
if( GetExtent( o, e )==0 )
return false;
// std::cout << "origin: [ " << o[ 0 ] << ", " << o[ 1 ] << " ]" << std::endl;
// std::cout << "extent: [ " << e[ 0 ] << ", " << e[ 1 ] << " ]" << std::endl;
// Zoom to overall region.
return ZoomToRegion( o, e, native, center, spacing );
}
template< typename Point, typename Spacing >
bool
GlView
::ZoomToLayer( const KeyType & key,
const Spacing & native,
Point & center,
Spacing & spacing ) const
{
Point o;
Point e;
// Get layer actor.
GlActor::Pointer actor( GetActor( key ) );
// If not found...
if( actor.IsNull() )
return false;
// Get origin and extent of layer.
actor->GetExtent( o[ 0 ], o[ 1 ], e[ 0 ], e[ 1 ] );
// Zoom layer region.
return ZoomToRegion( o, e, native, center, spacing );
}
template< typename Point, typename Spacing >
bool
GlView
::ZoomToRegion( const Point & origin,
const Point & extent,
const Spacing & native,
Point & center,
Spacing & spacing ) const
{
// std::cout
// << std::hex << this << std::dec
// << "::ZoomToRegion( "
// << "[" << origin[ 0 ] << ", " << origin[ 1 ] << "], "
// << "[" << extent[ 0 ] << ", " << extent[ 1 ] << "], "
// << "[" << native[ 0 ] << ", " << native[ 1 ] << "] )"
// << std::endl;
// Compute center point.
center.SetToMidPoint( origin, extent );
// std::cout << "-> center: " << center[ 0 ] << ", " << center[ 1 ] << std::endl;
// Get scale of (o, e) in viewport.
assert( !m_Settings.IsNull() );
double scale = m_Settings->GetScale( origin, extent, true );
// std::cout << "-> scale: " << scale << std::endl;
/*
assert( !std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() ||
( std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() &&
native[ 0 ]!=std::numeric_limits< typename Spacing::ValueType >::quiet_NaN()
)
);
assert( !std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() ||
( std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() &&
native[ 1 ]!=std::numeric_limits< typename Spacing::ValueType >::quiet_NaN()
)
);
assert( !std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() ||
( std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() &&
native[ 0 ]!=std::numeric_limits< typename Spacing::ValueType >::quiet_NaN()
)
);
assert( !std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() ||
( std::numeric_limits< typename Spacing::ValueType >::has_quiet_NaN() &&
native[ 1 ]!=std::numeric_limits< typename Spacing::ValueType >::quiet_NaN()
)
);
*/
// Apply signed scale.
spacing[ 0 ] = ( native[ 0 ]<0.0 ? -1 : +1 ) * scale;
spacing[ 1 ] = ( native[ 1 ]<0.0 ? -1 : +1 ) * scale;
// std::cout << "-> spacing: " << spacing[ 0 ] << ", " << spacing[ 1 ] << std::endl;
// Ok.
return true;
}
template< typename Point, typename Spacing >
bool
GlView
::ZoomToFull( const KeyType & key,
Point & center,
Spacing & spacing,
double units ) const
{
// std::cout
// << std::hex << this << std::dec
// << "::ZoomToFull();"
// << std::endl;
// Get layer actor.
GlActor::Pointer actor( GetActor( key ) );
// If not found...
if( actor.IsNull() )
return false;
// Get geo-interface.
const GeoInterface * geo =
dynamic_cast< const GeoInterface * >( actor.GetPointer() );
if( geo==ITK_NULLPTR )
return false;
// Get viewport current center and spacing.
assert( !m_Settings.IsNull() );
center = m_Settings->GetViewportCenter();
spacing = m_Settings->GetSpacing();
// std::cout << "-> spacing: " << spacing[ 0 ] << ", " << spacing[ 1 ] << std::endl;
// Get native spacing.
GeoInterface::Spacing2 n_spacing( geo->GetSpacing() );
// std::cout << "-> n_spacing: " << n_spacing[ 0 ] << ", " << n_spacing[ 1 ] << std::endl;
// Transform center point to image space.
Point o;
if( !geo->TransformFromViewport( o, center, true ) )
return false;
//
// Consider arbitrary point on the X-axis.
Point e;
e[ 0 ] = center[ 0 ] + units * spacing[ 0 ];
e[ 1 ] = center[ 1 ];
// Transform considered point.
if( !geo->TransformFromViewport( e, e, true ) )
return false;
// Compute extent vector.
e[ 0 ] -= o[ 0 ];
e[ 1 ] -= o[ 1 ];
// Apply extent vector length to view spacing.
//
// MANTIS-1178: Length of vector e must be divided by native
// spacing.
//
// MANTIS-1203: absolute value of native spacing should be
// considered (to avoid flipping effects).
spacing[ 0 ] =
vcl_abs( n_spacing[ 0 ] ) * units * spacing[ 0 ] /
vcl_sqrt( e[ 0 ] * e[ 0 ] + e[ 1 ] * e[ 1 ] );
//
// Consider arbitrary point on the Y-axis.
e[ 0 ] = center[ 0 ];
e[ 1 ] = center[ 1 ] + units * spacing[ 1 ];
// Transform considered point.
if( !geo->TransformFromViewport( e, e, true ) )
return false;
// Compute extent vector.
e[ 0 ] -= o[ 0 ];
e[ 1 ] -= o[ 1 ];
// Apply extent vector length to view spacing.
//
// MANTIS-1178: Length of vector e must be divided by native
// spacing.
//
// MANTIS-1203: absolute value of native spacing should be
// considered (to avoid flipping effects).
spacing[ 1 ] =
vcl_abs( n_spacing[ 1 ] ) * units * spacing[ 1 ] /
vcl_sqrt( e[ 0 ] * e[ 0 ] + e[ 1 ] * e[ 1 ] );
// std::cout << "-> spacing: " << spacing[ 0 ] << ", " << spacing[ 1 ] << std::endl;
//
// Compute aspect-ratio corrected spacing (smallest pixel is chosen
// as 1:1 reference).
//
// MANTIS-1202
//
// MANTIS-1203: restore sign of axis when applying isotrop spacing.
// {
if( vcl_abs( spacing[ 0 ] ) < vcl_abs( spacing[ 1 ] ) )
spacing[ 1 ] = ( spacing[ 1 ]<0.0 ? -1 : +1 ) * vcl_abs( spacing[ 0 ] );
else
spacing[ 0 ] = ( spacing[ 0 ]<0.0 ? -1 : +1 ) * vcl_abs( spacing[ 1 ] );
// }
// MANTIS-1202
// std::cout << "-> spacing: " << spacing[ 0 ] << ", " << spacing[ 1 ] << std::endl;
//
// Ok.
return true;
}
} // End namespace otb
#endif
|