This file is indexed.

/usr/include/OTB-5.8/otbGenericInterpolateImageFunction.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbGenericInterpolateImageFunction_txx
#define otbGenericInterpolateImageFunction_txx
#include "otbGenericInterpolateImageFunction.h"
#include "vnl/vnl_math.h"

namespace otb
{

/** Constructor */
template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::GenericInterpolateImageFunction()
{
  m_WindowSize = 1;
  this->SetRadius(1);
  m_OffsetTable = ITK_NULLPTR;
  m_WeightOffsetTable = ITK_NULLPTR;
  m_TablesHaveBeenGenerated = false;
  m_NormalizeWeight =  false;
}

/** Destructor */
template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::~GenericInterpolateImageFunction()
{
  this->ResetOffsetTable();
}

/** Delete every tables. */
template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
void
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::ResetOffsetTable()
{
  // Clear the offset table
  if (m_OffsetTable != ITK_NULLPTR)
    {
    delete[] m_OffsetTable;
    m_OffsetTable = ITK_NULLPTR;
    }

  // Clear the weights tales
  if (m_WeightOffsetTable != ITK_NULLPTR)
    {
    for (unsigned int i = 0; i < m_OffsetTableSize; ++i)
      {
      delete[] m_WeightOffsetTable[i];
      }
    delete[] m_WeightOffsetTable;
    m_WeightOffsetTable = ITK_NULLPTR;
    }
}

template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
void
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::SetRadius(unsigned int rad)
{
  //m_Radius = rad;
  this->GetFunction().SetRadius(rad);
  m_WindowSize = rad << 1;
  this->Modified();
}

template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
void
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::Modified() const
{
  Superclass::Modified();
  m_TablesHaveBeenGenerated = false;

}

/** Initialize used tables*/
template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
void
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::InitializeTables()
{
  // Compute the offset table size
  m_OffsetTableSize = 1;
  for (unsigned dim = 0; dim < ImageDimension; ++dim)
    {
    m_OffsetTableSize *= m_WindowSize;
    }

  // Allocate the offset table
  m_OffsetTable = new unsigned int[m_OffsetTableSize];

  // Allocate the weights tables
  m_WeightOffsetTable = new unsigned int *[m_OffsetTableSize];
  for (unsigned int i = 0; i < m_OffsetTableSize; ++i)
    {
    m_WeightOffsetTable[i] = new unsigned int[ImageDimension];
    }
}

/** Fill the weight offset table*/
template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
void
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::FillWeightOffsetTable()
{
  // Initialize the neighborhood
  SizeType radius;
  radius.Fill(this->GetRadius());
  if (this->GetInputImage() != ITK_NULLPTR)
    {
    IteratorType it = IteratorType(radius,  this->GetInputImage(), this->GetInputImage()->GetBufferedRegion());
    // Compute the offset tables (we ignore all the zero indices
    // in the neighborhood)
    unsigned int iOffset = 0;
    int          empty = static_cast<int>(this->GetRadius());

    for (unsigned int iPos = 0; iPos < it.Size(); ++iPos)
      {
      // Get the offset (index)
      typename IteratorType::OffsetType off = it.GetOffset(iPos);

      // Check if the offset has zero weights
      bool nonzero = true;
      for (unsigned int dim = 0; dim < ImageDimension; ++dim)
        {
        if (off[dim] == -empty)
          {
          nonzero = false;
          break;
          }
        }
      // Only use offsets with non-zero indices
      if (nonzero)
        {
        // Set the offset index
        m_OffsetTable[iOffset] = iPos;

        // Set the weight table indices
        for (unsigned int dim = 0; dim < ImageDimension; ++dim)
          {
          m_WeightOffsetTable[iOffset][dim] = off[dim] + this->GetRadius() - 1;
          }
        // Increment the index
        iOffset++;
        }
      }
    }
  else
    {
    itkExceptionMacro(<< "An input has to be set");
    }
}

/** Initialize tables: need to be call explicitly */
template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
void
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::Initialize()
{
  // Delete existing tables
  this->ResetOffsetTable();
  // Tables initialization
  this->InitializeTables();
  // fill the weight table
  this->FillWeightOffsetTable();
  m_TablesHaveBeenGenerated = true;
}

/** Evaluate at image index position */
template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
typename GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>::OutputType
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::EvaluateAtContinuousIndex(const ContinuousIndexType& index) const
{
  if (!m_TablesHaveBeenGenerated)
    {
    itkExceptionMacro(<< "The Interpolation functor need to be explicitly intanciated with the method Initialize()");
    }

  //unsigned int dim;
  IndexType baseIndex;
  double    distance[ImageDimension];

  // Compute the integer index based on the continuous one by
  // 'flooring' the index
  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
    {
    // The following "if" block is equivalent to the following line without
    // having to call floor.
    //    baseIndex[dim] = (long) vcl_floor(index[dim] );
    if (index[dim] >= 0.0)
      {
      baseIndex[dim] = (long) index[dim];
      }
    else
      {
      long tIndex = (long) index[dim];
      if (double(tIndex) != index[dim])
        {
        tIndex--;
        }
      baseIndex[dim] = tIndex;
      }
    distance[dim] = index[dim] - double(baseIndex[dim]);
    }

  // Position the neighborhood at the index of interest
  SizeType radius;
  radius.Fill(this->GetRadius());
  IteratorType nit = IteratorType(radius, this->GetInputImage(), this->GetInputImage()->GetBufferedRegion());
  nit.SetLocation(baseIndex);

  const unsigned int twiceRadius = static_cast<const unsigned int>(2 * this->GetRadius());
  /*  double xWeight[ImageDimension][ twiceRadius]; */
  std::vector<std::vector<double> > xWeight;
  xWeight.resize(ImageDimension);
  for (unsigned int cpt = 0; cpt < xWeight.size(); ++cpt)
    {
    xWeight[cpt].resize(twiceRadius);
    }

  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
    {
    // x is the offset, hence the parameter of the kernel
    double x = distance[dim] + this->GetRadius();

    // If distance is zero, i.e. the index falls precisely on the
    // pixel boundary, the weights form a delta function.
    /*
    if(distance[dim] == 0.0)
    {
    for( unsigned int i = 0; i < m_WindowSize; ++i)
      {
    xWeight[dim][i] = static_cast<int>(i) == (static_cast<int>(this->GetRadius()) - 1) ? 1. : 0.;
      }
    }
    else
    {
    */
    // i is the relative offset in dimension dim.
    for (unsigned int i = 0; i < m_WindowSize; ++i)
      {
      // Increment the offset, taking it through the range
      // (dist + rad - 1, ..., dist - rad), i.e. all x
      // such that vcl_abs(x) <= rad
      x -= 1.0;
      // Compute the weight for this m
      xWeight[dim][i] = m_Function(x);
      }
    //}
    }
  if (m_NormalizeWeight == true)
    {
    for (unsigned int dim = 0; dim < ImageDimension; ++dim)
      {
      double sum = 0.;
      // Compute the weights sum
      for (unsigned int i = 0; i < m_WindowSize; ++i)
        {
        sum += xWeight[dim][i];
        }
      if (sum != 1.)
        {
        // Normalize the weights
        for (unsigned int i = 0; i < m_WindowSize; ++i)
          {
          xWeight[dim][i] =  xWeight[dim][i] / sum;
          }
        }
      }
    }

  // Iterate over the neighborhood, taking the correct set
  // of weights in each dimension
  RealType xPixelValue;
  itk::NumericTraits<RealType>::SetLength(xPixelValue, this->GetInputImage()->GetNumberOfComponentsPerPixel());
  xPixelValue=static_cast<RealType>(0.0);

  for (unsigned int j = 0; j < m_OffsetTableSize; ++j)
    {
    // Get the offset for this neighbor
    unsigned int off = m_OffsetTable[j];

    // Get the intensity value at the pixel
    RealType xVal = nit.GetPixel(off);

    // Multiply the intensity by each of the weights. Gotta hope
    // that the compiler will unwrap this loop and pipeline this!
    for (unsigned int dim = 0; dim < ImageDimension; ++dim)
      {
      xVal *= xWeight[dim][m_WeightOffsetTable[j][dim]];
      }

    // Increment the pixel value
    xPixelValue += xVal;
    }

  // Return the interpolated value
  return static_cast<OutputType>(xPixelValue);
}

template<class TInputImage, class TFunction, class TBoundaryCondition, class TCoordRep>
void
GenericInterpolateImageFunction<TInputImage, TFunction, TBoundaryCondition, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

} //namespace otb

#endif