This file is indexed.

/usr/include/OTB-5.8/otbDecisionTreeMachineLearningModel.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbDecisionTreeMachineLearningModel_txx
#define otbDecisionTreeMachineLearningModel_txx

#include "otbDecisionTreeMachineLearningModel.h"
#include "otbOpenCVUtils.h"

#include <fstream>
#include "itkMacro.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::DecisionTreeMachineLearningModel() :
 m_DTreeModel (new CvDTree),
 m_MaxDepth(INT_MAX),
 m_MinSampleCount(10),
 m_RegressionAccuracy(0.01),
 m_UseSurrogates(true),
 m_MaxCategories(10),
 m_CVFolds(10),
 m_Use1seRule(true),
 m_TruncatePrunedTree(true)
{
  this->m_IsRegressionSupported = true;
}


template <class TInputValue, class TOutputValue>
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::~DecisionTreeMachineLearningModel()
{
  delete m_DTreeModel;
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
  //convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);

  float * priors = m_Priors.empty() ? ITK_NULLPTR : &m_Priors.front();

  CvDTreeParams params = CvDTreeParams(m_MaxDepth, m_MinSampleCount, m_RegressionAccuracy,
                                       m_UseSurrogates, m_MaxCategories, m_CVFolds, m_Use1seRule, m_TruncatePrunedTree, priors);

  //train the Decision Tree model
  cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U );
  var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL) ); // all inputs are numerical

  if (!this->m_RegressionMode) //Classification
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;

  m_DTreeModel->train(samples,CV_ROW_SAMPLE,labels,cv::Mat(),cv::Mat(),var_type,cv::Mat(),params);
}

template <class TInputValue, class TOutputValue>
typename DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  //convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input,sample);

  double result = m_DTreeModel->predict(sample, cv::Mat(), false)->value;

  TargetSampleType target;

  target[0] = static_cast<TOutputValue>(result);

  if (quality != ITK_NULLPTR)
    {
    if (!this->m_ConfidenceIndex)
      {
      itkExceptionMacro("Confidence index not available for this classifier !");
      }
    }

  return target;
}

template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_DTreeModel->save(filename.c_str(), ITK_NULLPTR);
  else
    m_DTreeModel->save(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
  if (name == "")
    m_DTreeModel->load(filename.c_str(), ITK_NULLPTR);
  else
    m_DTreeModel->load(filename.c_str(), name.c_str());
}

template <class TInputValue, class TOutputValue>
bool
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
  std::ifstream ifs;
  ifs.open(file.c_str());

  if(!ifs)
  {
    std::cerr<<"Could not read file "<<file<<std::endl;
    return false;
  }

  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    //if (line.find(m_SVMModel->getName()) != std::string::npos)
    if (line.find(CV_TYPE_NAME_ML_TREE) != std::string::npos)
    {
       //std::cout<<"Reading a "<<CV_TYPE_NAME_ML_TREE<<" model"<<std::endl;
       return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif